
'Navy Personnel Research and Development Center
San Diego, California 92152-6800 TN-91-20 Volume 1 August 1991

I I I I

Ln
N

<I Human-Computer Interfaces for
Tactical Decision Making, Analysis,

and Assessment Using Artificially
Intelligent Platforms:4z'-" *2N; .*. "

Volume 1,
Ocr 2 119 Software Design and Database

S; : Descriptions for BATMAN & ROBIN

I Pat-Anthony Federico
Randy R. UlIrich

Brian L. Van de Wetering
Christel I. Tomlinson

Dean J. E. Long
Fred R. E. Long

Thomas E. Bridges

I 91-11161I i 1 i $i !1 1 1 l I$ I.I

I Approved for public release: distribution is unlimited.

i Im I I

I

I NPRDC-TN-91-20 August 1991

I
I

Human-Computer Interfaces for Tactical Decision Making,
Analysis, and Assessment Using Artificially Intelligent Platforms:

Volume 1, Software Design and Database Descriptions for BATMAN & ROBiNI
I Pat-Anthony Federico

Navy Personnel Research and Development Center

IRandy R. Ullrich
Brian L. Van de Wetering

Christel I. Tomlinson
Dean J. E. Long
Fred R. E. LongI Thomas E. Bridges

Systems Engineering AssociatesI
I

Reviewed and released by
William E. Montague

Director, Training Technology Department (Acting)

Approved for public release;
distribution is unlimited.

I
Navy Personnel Research and Development Center

San Diego, California 92152-6800

I

I REPORT DOCUMENTATION PAGE FormApproved
I OMB No. 0704-0188

Public reporing burde, for this collection of information is esimated to aveage I hour per response, including the time for reviewing utstructions, searching existing data sources, gatheing
and maintaining the data needed, and completing and reviewing the collecuon of infonnation. Send commnus regarding this burdn esunatc or any othe aspect of this collecuon of informautn.
including suggestions for reducing this burden. to Washington lleadquarers Sevrtes. Directorate for Information Operations and Reports. 1215 Jefferson Davs Highway. Suate 1204. Arsing-
ton, VA 22202-4302, and to the Office of Management and Budget. Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATE COVEREDT August 1991 Firml--Apr 89-Aug 91
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Human-Computer Interfaces for Tactical Decision Making, Analysis, and PE 0602763N, WU 522-801-013-03.04;
Assessment Using Artificially intelligent Platforms: Volume 1, Software Design PE 0603720N, PR Z-1772, TA ET08;
and Database Descriptions for BATMAN & ROBIN PE 0205604N, TAX 1977

6. AUTHOR(S)
Pat-Anthony Federico, Randy R. Ullrich, Brian L. Van de Wetering, Christel I.
Tomlinson, Dean J. E. Long, Fred R. E. Long, and Thomas E. Bridges

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Navy Personnel Research and Development Center REPORT NUMBER
San Diego, California 92152-6800 NPRDC-TN-91-20

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
Office of the Chief of Naval Research (OCNR-222) AGENCY REPORT NUMBER
Chief of Naval Operations (PERS-11)
Space and Naval Warfare Systems Command (SPAWA-, !59-4)

11. SUPPLEMENTARY NOTE3

I 12a. DISTRIBUTION/AVAILABILIfy STATEM*ENT 12b. DISTRIBUTION CODE
Approved for public relpase; distribution is unlimited.

13. ABSTRACT (Maximum 200 words)
This technical note contains the introduction, artificial intelligence techniques, software design, and database descriptions for the

Battle-Management Assessment System and Raid Originator Bogie Ingress (BATMAN & ROBIN). These software systems are being
developed to assess how well individuals can allocate, deploy, and manage air, surface, and/or subsurface tactical assets during
simulated sea battles in many warfare areas. Together they form a desk-top, computer-based, performance-measurement system
incorporating high resolution graphics, low level modelling, artificial intelligence techniques, to fill the gap between board games
that are run in real or fictitious time with subjective assessment and inappropriate feedback and very expensive and manhour-intensive,
mainframe-based simulators. Two of the major contributions of these dual systems are very friendly human-computer interfaces and
automated performance assessment. Because of the nature of their generic software and independent databases, as well as the potential
for incorporating different computer models, BATMAN & ROBIN can be used for a variety of functions: (a) training and testing
tactical knowledge, (b) planning and decision aiding for tactical situations, (c) de' ,eoping and evaluating tactics themselves, (d)
analyzing and evaluating various tactical sensor, weapon, and communicaticn systems, (e) frontending sophisticated tactical
computer models and complex databases, (f) interfacing tactical artificial intelligent and expert systems, (g) generating rapidly
scenarios for tactical trainers, (h) prototyping complicated scenarios for major wargaming systems, (i) orienting novices to facets of
naval warfare, (j) evaluating tactical display symbologies and formats, and (k) providing an experimental environment for studying
tactical decision making.

14. SUBJECT TERMS 115. NUMBER OF PAGES

Human-Computer Interface; Direct-Manipulation Interfaces; Artificial Intelligence; Tactical 145
Decision Making, Analysis, and Assessment; Tactical Development and Evaluation; 16. PRICE CODE
V kwgaming; %Lomputer Simulation and Modeling; Decision Support System

17 SECURITY CLASSIFICA- 18 SECURITY CLAoSIFICA- 19 SECURITY CLASSIFICA- 20 LIMITATION OF ABSTRACT
i ION OF REPORT TION OF THIS PAGE TION OF ABSTRACT

I UNCLASSIFIED UNCLASSIFIFD UNCLASSIFIED UNLIMITED

NSN 7540-01-280-5500 Standard Fon 298 (Rev 2-89)
Prescribed by ANSI Std. Z39-18
298-102

I

IFOREWORD
IThe funding provided by the Office of Naval Techno!ogy (Support Technology

Directorate), Program Element 0602763N, Work Unit 522-801-013-03.04; Deputy
Chief of Naval Operations for Manpower, Personnel, and Training (Total Force Train-
ing and Education), Program Element 0603720N, Project Z-1772, Task ET08; and
Space and Naval Warfare Systems Command (Advanced Tactical Data Link Systems),
Program Element 0205604N, Task X1977; for this documented development is appre-
ciated and acknowledged.

The general goal of this effort was to develop friendly human-computer interfaces
for perfom-nance asse-Emc-t .,.d =;-1 -cz.nario gcneration for &,e Navy' " "-
ing communities as well as research and development centers to frontend different
computer models and databases, when necessary, for a variety of functions, which are
identified in the introduction of this document.

The assistance through the years of a number of former and present University of
California, San Diego students, who were brought on board under the San Diego StateIUniversity Foundation contract to support the Navy laboratories in this area, in
developing and evaluating several versions of our software is appreciated and ack-
nowledged. These include Debbie Bartolome, Steve Bickel, Chris Cassella, Phil Cohen,
Bill Kamm, Di Lacerna, Bill Limm, Nina Liggett, Glen Little, Jerry Lugert, Rob
McCarter, Tony Meadors, Lorna Mildice, Sole Millonida, Dan Nadir, Alex Olender,
Regina Peck, Jeff Roorda, Chris Ryan, Karl Schricker, Ellen Schuller, Alice Shimada,
and Brian Smithey.

The support of the staff of Commander, Naval Air Force, United States Pacific
Fleet; Commander, Fighter Airborne Early Warning Wing Pacific; and Commander,
Patrol Wings Pacific is appreciated and acknowledged. Also, the support and assistance
of the Commanding Officers, Executive Officers, and instructors at the operational
testbed sites for our software is appreciated and acknowledged, specifically: Carrier
Airborne Early Warning Weapons School, NAS Miramar; Fighter Squadron 124, NAS
Miramar; Tactical Training Team, NAS Moffett Field; Sea-Based Weapons and
Advanced Tactics Squadron, NAS North Island; Marine Aviation Weapons and Tactics
Squadron One, MCAS Yuma; Officer Tactical Training Department, Fleet Combat
Training Center Pacific; and Wargaming Department, Tactical Training Group Pacific.

The encouragement, and foresight to use our interfaces, of a large number of indi-
viduals at many research and development centers, which are transition sites for our
software, specifically: Naval Air Development Center, Naval Surface Warfare Center,
Naval Research Laboratory, Naval Training Systems Center, Naval Ocean Systems
Center, Naval Weapons Center, Naval Warfare Analysis Center, Applied Physics
Laboratory Johns Hopkins University, and Canadian Defense and Civil Institute of
Environmental Medicine, as well as the Naval Postgraduate School and Naval War
College, is appreciated and acknowledged. Our software is contributing to many
research and development projects as well as warfare analysis and wargaming at these
sites.

Special thanks to LT Fred Buoni, formerly of die Naval Postgraduate School, for
programming the ASW detection models which we have incorporated into our

v

I

software; LCDR Howard Peck, formerly of this Command, and Bob MacDougall,

Pacer Systems, Inc., for contributing to our tactical knowledge engineering efforts; Bill

Root, graduate student, Department of Mathematics, University of California, San

Diego, for producing an algorithm which optimizes detections for simulated plattorms;

Dr. Dan Sunday, APL, for providing the digitized mapping software; Randy Ullrich,

Brian Van de Wetering, Christel Tomlinson, Dean Long, Fred Long, and Tom Bridges,

SEA, Inc., for their programming expertise; and Jim Bolwerk, Training Officer, AIR-

PAC, for his continuous support and assistance through the years.

Also, special thanks to CAPT Bai Bacon, former Commanding Officer, Dr. Jim I
McMichael, former Technical Director, and Dr. Ed Aiken, former Department Direc-

tor, all of this command, for their support. W
William E. Montague

Director, Training Technology (Acting)

I

I

i
I

I

I

I Summary

IThis technical note contains the introduction, artificial intelligence techniques,
softvare design, and database dcscriptioiis for the Battle-Management Assessment Sys-
tem and Raid Originator Bogie Ingress (BATMAN & ROBIN). Other documentation

1 in preparation will discuss the human-computer interfaces employed in BATMAN &
ROBIN.I

Part I: Introduction
BATMAN is being developed to assess how well individuals can allocate, deploy,

and manage air, surface, and/or subsurface tactical assets during simulated sea ':-i1es
in many warfare areas. ROBIN is being deveioped to generate rapidly Red force raids
comprised of a large number of air, surface, and/or subsurface tactical assets against
Blue naval task forces or land bases in many warfare theaters. In order to complete
the crention of a scenario, the user also specifies in ROBIN Blue force tactical
resources that will be available in BATMAN for allocation, deployment, and manage-
ment as well as Gretn or neutral force air, surface, and/or subsurface movements.
ROBIN creates scenarios that can be saved, and subsequently presented sequentially or
randomly in BATMAN. Together BATMAN & ROBIN fotiai a desk-top, computer-
based, performance-measurement system incorporating high resolution graphics, low
level modeling, and artificial intelligence techniques to fill the gap between board
games that are run in real or fictitious time with subjective assessment and inappropri-ate feedback and very expensive and manhour-intensive, mainframe-based simulators.
Two of the major contributions of these dual systems are very friendly human-

computer interfaces and automated performance measurement.

Because of the nature of their generic software and independent databases, as well
as the potential for incorporating different computer models, BATMAN & ROBIN can
be used for a variety of functions: (a) training and testing tactical knowledge, (b) plan-
ning and decision aiding for tactical situations, (c) developing and evaluating tactics
themselves, (d) analyzing and evaluating various tactical sensor, weapon, and cor-I munication systems, (e) frontending sophisticated tactical computer models and
complex databases, (f) interfacing tactical artificial intelligent and expert systems,
(g) generating rapidly scenarios for tactical trainers, (h) prototyping complicated
scenarios for major wargaming systems, (i) orienting novices to facets of naval war-
fare, (j) evaluating tactical display symbologies and formats, and (k) providing an
experimental environment for studying tactical decision making.

Part II: Artificial Intelligence
The second part of the documentation defines BATMAN & ROBIN's artificial

intelligence or smart platform behavior, including knowledge-based finite state auto-
mata and associated state-transition rules for specific missions.

vii

I
Part III: Software Design 3

The third part of the documentation deals with BATMAN & ROBIN's software
design, including descriptions of the software data structures, packages, and interfaces. 1

Part IV: Database Descriptions
The fourth part of the documentation describes BATMAN & ROBIN's database

descriptions, including parameter, scenario, graphic, and user databases.

I
I

I
I
I
I
I
I
I
I
I
I

viii I

I

Contents

Part I: Introduction
1.0 BATM AN & ROBIN ... 1

2.0 Notational Conventions .. 2

Part II: Artificial Intelligence

3.0 Artificially Intelligent or Smart Platform Behavior 3
3.1 Knowledge Representation and Software Design Alternatives 3

3.1.1 LISP and Expert-System Shells ... 4
3.1.2 Procedural Decision Method ... 4
3.1.3 Weighted-Influence Model .. 4
3.1.4 Knowledge-Based System vs. Finite State Automata 4
3.1.5 Knowledge-Based Finite State Automata .. 5

3.2 Determinants of Behavior .. 5
3.3 Knowledge-Based FSAs .. 6

3.3.1 Action States ... 7
3.3.1.1 At/Return Station ... 7
3.3.1.2 Continue ASW Mission .. .8
3.3.1.3 Continue Mission .. 8
3.3.1.4 Continue Track 8
3.3.1.5 Visual Identification ... 9
3.3,1.6 Escort Threat ... 9
3.3.1.7 Intercept ... 9
3.3.1.8 Kill (Platform) ... 9
3.3.1.9 Close Kill ... 10
3.3.1.10 Refuel .. 10
3.3.1.11 Give Fuel .. 10
3.3.1.12 Return to Base .. 11
3.3.1.13 Missile State ... 11

3.3.2 User Input ... 11
3.3.3 General Rules ... 12

3.3.3.1 Identification Rules ... 13
3.3.3.2 Intercept Rules 13
3.3.3.3 Combat Rules ... 14
3.3.3.4 Abort Mission Rules ... 15
3.3.3.5 Abort Kill Rules .. 15
3.3.3.6 Refueling Rules .. 16
3.3.3.7 User Intervention Rules .. 16

3.3.4 Platform Missions .. 16
3.3.4.1 Blue Fighter Aircraft ... 17
3.3.4.2 Blue Air Surveillance ... 19
3.3.4.3 Blue Attack Aircraft ... 21

ix

3.3.4.4 Blue Air ASW.. 221
3.3.4.5 Blue Air Tankers... 24
3.3.4.6 Blue Ships ... 25
3.3.4.7 Blue Submarines ... 26
3.3.4.8 Red Fighter Aircraft ... 27
3.3.4.9 Red Attack Aircraft .. 28
3.3.4.10 Red Air Surveillance... 29I
3.3.4.11 Red Ships.. 30
3.3.4.12 Red Submarines... 31
3.3.4.13 Red Anti-Ship Missiles (ASMs).................................... 32
3.3.4.14 Green Air, Green Ships, and Green Submarines 33

3.4 Platform Interactions... 343

Part III: Software Design

4.0 Purpose and Scope... 351

5.0 Introduction .. 35
5.1 Design Philosophy ... 353
5.2 Software Caveats... 35
5.3 Guidelines for Adding a Computer Model ... 36

6.0 Software Components .. 37
7.0 BATMAN & ROBIN Global Data Structures................................ 38

8.0 BATMAN & ROBIN Software Packages...................................... 42
T t17 q-,4,1 .,.-l -!: 42

8.1.1 Event-ctrl 42
8.1.2 Init .. 42
8.1.3 Init-con.. 45
8.1.4 Initpath ... 45I
8. 12. _' tid.s antenna ... 45
8.1.6 Main ... 45
8.1.7 Misc ... 45
8.1.8 Playback... 45
8.1.9 Readobj.. 46
8.1.10 Scen-db-access... 46
8.1.11 Timer .. 46
8.1.12 User-db-access ... 46
8.1.13 User-funcs,.. 46

8.2 Loadout and Vector-Logic Grid Packages ... 47
8.2.1 Grid .. 47
8.2.2 Jtids-antenna-load.. 47
8.2.3 Loadoiit.. 47
8.2.4 Loadout map ... 48

8.2.5 Loadout-tf... 49

xI

8.3 Deployment Packages ... 49
8.3.1 Alert ... 49
8.3.2 Cfjanels_create.. 49
8.3.3 Cfjanels_notify.. 50
8.3.4 Find symbols ... 50
8.3.5 Atids network.. ... 50
8.3.6 Launchpanel ... 51
8.3.7 Symbol_manager ... 51

8.4 BATM1AN Simulation Packages.. 51
8.4.1 Coverage .. 51
8.4.2 Detect.. 51
8.4.3 Engine ... 51
8.4.4 Rtids conn ... 53
8.4.5 Jtids hooks ... 53
8.4.6 Plat-comm .. 53
8.4.7 Plat detect funcs ... 53
8.4.8 Plat-draw-funcs .. 53
8.4.9 Plat-list-funcs... 53
8.4.10 Plat update funcs .. 53
8.4.11 Status... 54

8.5 Smart-Platforms Packages .. 54
8.5.1 Sp_action_funcs .. 55
8.5.2 Spbrowser.. 55
,".5.3 Spcond-funcs.. 56
8.5.4 Spengine.. 56
8.5.5 Sp_ %,i;es .. 56
8.5.6 Sp_-it, .. 56

8.6 EW/Y _-A P,!:kages .. 56
3.6.1 Esm-detect .. 58
8.6.2 Esin display... 58
8.6.3 Esm-status .. 58

8.7 ASW Packages ... 58
8.7.1 Aswpattemgenerator.....I.. 58
8.7.2 Asw-sonar .. 59
8.7.3 Lambda sigma... 60

8.8 Performance Measures Packages... 60
8.8.1 Stats. .. 60
8.8.2 Stats, compute_funcs... 61
8.8.3 Stats notify ... 61
8.8.4 Stats update funcs... 61
8.8.5 Stats -verify ... 61

8.9 ROBIN Packages .. 61
8.9.1 Robin_assign.. 61
8.9.2 Robin blue .. 61
8.9.3 Robin edit... 63
8.9.4 Robin mnit... 63

xi

!

8.9.5 Robin io ... 63 1
8.9.6 Robin loadout .. 63
8.9.7 Robin-m anage ... 63
8.9.8 Robin-m ap ... 64 I
8.9.9 Robin_path ... 64
8.9.10 Robinvectors .. 64
8.9.11 Robin view .. 64

8.10 D atabase and Graphical-Frontend Packages ... 64
8.10.1 Database ... 64
8.10.2 Param attribute m anager ... 65 I
8.10.3 Param _data m anager .. 65
8.10.4 Param _w indow s65

8.11 U tility Packages 65 I
8.11.1 Basesand ports .. 65
8.11.2 Canvas w in ... 65
8.11.3 Chaff .. 65 I
8.11.4 Colors .. 66
8.11.5 Graphicorganism ... 66
8.11.6 Hash ... 66 I
8.11.7 Listm anager ... 66
8.11.8 M em ory ... 66

8.12 M essages ... 66 I
8.12.1 M ps .. 66
8.12.2 N um berpad .. 67
8.12.3 Panel w in ... 67 I
8.12.4 Popuppanel .. 67
8.12.5 Rangeandbearing .. 67
8.12.6 Scendisplay .. 68 U
8.12.7 Tim e-item .. 68
8.12.8 Udrop ... 68
8.12.9 U tilities .. 68 I
8.12. 10 Version ... 68
8. 12.11 W arnings_andw pnstatus .. 68
8.12.12 Zoom .. 68 I

9.0 Softw are Interfaces .. 69
9.1 W orld Database II .. 69 5

9.1.1 drawm aponpr ... 71
9.2 JTIDS ... 71

9.2.1 get.jam _radius .. 71
9.2.2 jtids_pt_pt_connectivity and jtidscontourconnectivity 72

9.3 A nti-Subm arine W arfare 73
9.3.1 init-random jum p ... 75 3
9.3.2 random _jum ptim e .. 75
9.3.3 sonar .. 76

xii I

I

Part IV: Database Descriptions
10.0 Purpose and Scope ... 76

11.0 Parameter Database.. ... 76
11.1 Hybrid Ndbm Relational Database Model ... 76
11.2 Location and Formt .. 77
11.3 Platform Parameters .. _78
11.4 Weapon Parameters .. 84
1 .5 Sensor Parameters.. 85

11.6 ITIDS Parameters .. 86
11.7 ASW Parameters ... 87

11.7.1 Patterns .. 87
11.7.2 Environment... 88
11.7.3 Sonobuoys S,

11.8 Icon Parameters 89
11.9 S ystem- Configuration Parameters.. 93
11.10 Performance- Measures Parameters. ... 97
11 .11 User-Database Parameters... ... 97
11. 12 GFED Parameters.. 98

12.0 Scenario Database.. 99
12.' Blue-Force File 100
12.2 Blue-Force Messages File.. 100
12.3 Path-Force File.. 100

12.3.1 Tactical- S ituation Section .. 101
12.3.2 Path Section 101
12.3.3 Sample Path-Force File... 102

13.0 Graphic Database... 102

14.0 User Database ... 103

References ... 104

APPENDIX A--AN O(D-s(N log2 N)) ALGORITHM FOR RANGE/BEARING
RESTRICTED SEARCH IN TWO DIMENSIONS......................... A-0

APPENDIX B--BA1TLE-DAMAGE-ASSESSMENT SIMULATION.......... B-0

APPENDIX C--RELATIONAL DATABASES: CONSIDERATIONS, ISSUES,
AND EVALUATION ... C-0

xiii

I

List of Tables [

1. Data Structure to File Mapping .. 38 1
2. Default Antenna Specifications for JTIDS-Capable Aircraft .. 48 3
3. Available Sonobuoy Patterns ... 59

4. Performance Measures Data Structures .. 60 1
5. Object Identification Numbers ... 81 3

I
I
i
I

I
I
i
I
I

I
xiv I

I

I

I List of Figures
1. BATMAN & ROBIN Software Components .. 37

2. BATMAN CONSOLE FORCE Data Structure ... 40

3. BATMAN PATHFORCE Data Structures ... 41

4. ROBIN Blue-Force Template .. 43

5. ROBIN Path-Force Data Structures .. 44

6. ENGINENODE List .. 52

7. ROBIN Features to Package Map ... 62

8. BATMAN & ROBIN Coordinate Systems .. 70

I
I
I
I

I
I
I x

I

BATMAN & ROBIN Introduction

Part I: Introduction

1.0 BATMAN & ROBIN

Battle-Management Assessment System (BATMAN) is being developed to assess how well
individuals can allocate, deploy, and manage air, surface, and/or subsurface tactical assets during
simulated sea battles in many warfare areas. Raid Originator Bogie Ingress (ROBIN) is being
developed to generate rapidly Red force raids comprised of a large number of air, surface, and/or
subsurface tactical assets against Blue naval task forces or land bases in many warfare theaters. In
order to complete the creation of a scenario, the user also specifies in ROBIN Blue force tactical
resources that will be available in BATMAN for allocation, deployment, and management as well
as Green or neutral force air, surface, and/or subsurface movements. ROBIN creates scenarios that
can be saved, and subsequently presented sequentially or randomly in BATMAN. Together
BATMAN & ROBIN form a desk-top, computer-based, performance-measurement system
incorporating high resolution graphics, low level modeling, and artificial intelligence techniques
to fill the gap between board games that are run in real or fictitious time with subjective assessment
and inappropriate feedback and very expensive and manhour-intensive, mainframe-based
simulators. Two of the major contributions of these dual systems are very friendly human-
computer interfaces and automated performance measurement.

Since they present an animated simulation, model, metaphor, or microworld to the user, BATMAN
& ROBIN employ direct-manipulation, human-computer interfaces (Hutchins, Hollan, & Norman,
1986; Shneiderman, 1982) where graphic objects, e.g., aircraft or ship silhouettes, are continuously
depicted, moved, and queried by the operator physically moving and clicking a mouse resulting in
immediately visible impact on the icons. These systems assume that the user has some knowledge
of Blue, Red, and Green force platforms, sensors, weapons, and tactics. BATMAN & ROBIN use
databases which are independent of the simulation software to store the parameters, attributes, and
characteristics of Blue, Red, and Green platforms. Currently, these values are unclassified or
sanitized; however, they can be made classified by using the friendly graphic interface. BATMAN
assesses the tactical decision making of the individual managing the entire battle, or any of its
components in terms of composite warfare structure, by measuring performance automatically and
objectively against multivariate criteria which are immediately fedback to the user at the end of
each scerario. These measures are saved by the system for subsequent statistical analyses, and are
available for formative and summative evaluations of performance.

BATMAN & ROBIN are written in the "C" programming language (Kernighan & Ritchie, 1988)
and currently run on the Sun-4 family of computers, e.g., 110, 260C, 280S, Sparcstation 1, 2, 330,
and 370 as well as the Navy's Desk-Top Tactical Computer (DTC) 2 under Sun Microsystems'
Release 4.1.1 of the UNIX operating system. These systems are completely documented and
properly commented to facilitate integration of various validated and verified computer models and
databases to these friendly human-computer interfaces. The generic nature of BATMAN &
ROBIN allows the user to add or delete platforms at will without rewriting the software. Also, the
modularity of the code permits the incorporation of different computer models for various sensor,
weapon, communication, and environmental systems. The Sun-4 family of computers allows the
simultaneous running of models written in different languages, e.g., "C", ADA, MODULA-2,
FORTRAN 77, PASCAL, and COMMON LISP.

- 1-

BATMAN & ROBIN Introduction •

Because of the nature of their generic software and independent databases, as well as the potential U
for incorporating different computer models, BATMAN & ROBIN can be used for a variety of
functions: (a) training and testing tactical knowledge, (b) planning and decision aiding for tactical
situations, (c) developing and evaluating tactics themselves, (d) analyzing and evaluating various
tactical sensor, weapon, and communication systems, (e) frontending sophisticated tactical
computer models and complex databases, (f) interfacing tactical artificial intelligent and expert
systems, (g) generating rapidly scenarios for tactical trainers, (h) prototyping complicated
scenarios for major wargaming systems, (i) orienting novices to facets of naval warfare, (j)
evaluating tactical display symbologies and formats, and (k) providing an experimental
environment for studying tactical decision making. MANY OF THE ABOVE USES ASSUME
THE INTEGRATION OF VALID MODELS AND VERIFIED DATABASES INTO BATMAN
& ROBIN. 3
BATMAN & ROBIN are still under development. The present software release is at testbed sites
for demonstration, evaluation, and feedback purposes only. AT THIS TIME, BATMAN & ROBIN
ARE NOT TO BE USED FOR TACTICAL TRAINING OR DECISION AIDING. THE £
DATABASES EMPLOYED ARE SANITIZED OR UNCLASSIFIED; PLATFORM
PARAMETERS AND COMPUTER MODELS ARE ONLY APPROXIMATE. THAT IS, THE
COMPUTER MODELS AND DATABASES HAVE NOT BEEN VALIDATED OR VERIFIED. I
Our development has concentrated on producing friendly human-computer interfaces for air,
surface, subsurface, and electronic warfare and platform-parameter databases as well as making
simulated platforms act in an artificially intelligent or smart manner according to defense warnings I
and weapons status. Validated or verified computer models and databases are available to the
interested user throughout the Department of Defense, and can be readily incorporated into
BATMAN & ROBIN for a variety of uses as indicated above. a
This latest documentation describes the present software design, database descriptions, and
artificial intelligence aspects of BATMAN & ROBIN, Version 4.0. It updates earlier i
documentation which described the background, rationale, software design, and database
descriptions for a previous version of BATMAN & ROBIN (Federico, Bickel, Ullrich, Bridges, &
Van de Wetering, 1989). It is intended for software engineers familiar with Unix (SunOS 3
Reference Manual, 1990), SunView (SunView Programmer's and System Programmer's Guides,
1990), and the C programming language (Kernighan & Ritchie, 1988). Part II of this document
covers BATMAN & ROBIN's artificial intelligence or smart platform behavior, including I
knowledge-based finite state automata and associated state-transition rules for specific missions.
Part III covers BATMAN & ROBIN's software design, including descriptions of the software data
structures, packages, and interfaces. Part IV covers BATMAN & ROBIN's database descriptions, 5
including the parameter, scenario, graphic, and user databases. Other documentation in preparation
will discuss the human-computer interfaces employed in BATMAN & ROBIN.

2.0 Notational Conventions

The following notational conventions are used throughout this document:

Convention Meaning,

Bold UNIX filenames, C package names, Object- Definition
Database parameters, and document section titles are set in

-2-

I

BATMAN & ROBIN Artificial Intelligence

bold type to distinguish them from ordinary text. In this
documentation, "package" is used to refer to a collection of
related C functions and data types grouped in one or more
files.

Italics Italics are used for the names of C functions and variables. In
addition, italics are occasionally used to emphasize
particular words in the document.

ITALIC CAPITALS Italic capital letters are used for the names of C data
structures.

Part II: Artificial Intelligence

3.0 Artificially Intelligent or Smart Platform Behavior

The objective of smart platforms is to make simulated aircraft, ships, and submarines act artificially
intelligently during BATMAN. Blue force behaves more realistically according to its defense
warnings, whether or not Red-force hostile action is perceived to be improbable, probable, or
imminent, i.e., White, Yellow, or Red, respectively; weapons status, can launch or not launch
weapons, i.e., weapons "free" or "tight", respectively; and assigned missions, e.g. fighter, attack,
or surveillance aircraft. Many decisions are delegated to the individual platforms. For example,
actions such as refueling and visual identification (VID) are now simulated without user
intervention. This allows the person managing Blue forces to focus on tactical decision-making,
such as the command and control of assets. Also, smart-platform behavior results in a more
formidable opponent in Red force, which now behaves more intelligently. If their detections and
weapons status warrant, Red-force platforms will leave their previously specified paths to pursue
Blue-force platforms. This creates much more challenging and demanding raids for the Blue force
to defend against. The recent addition of Green-force platforms to this version of BATMAN &
ROBIN further simulates uncertainty, confusion, and the "fog-of-war."

3.1 Knowledge Representation and Software Design Alternatives

Since what constitutes artificially intelligent or smart-platform behavior is debatable, it was crucial
that the knowledge representation and software designs selected be flexible enough so that they
could be enhanced and refined as necessary. Additionally, the designs for smart-platform behavior
had to meet several other criteria, namely:

• compatible in language and programming style with the rest of BATMAN & ROBIN;

" efficient, so as not to degrade the performance of other BATMAN & ROBIN computer
models (now and in the future), and user interaction and response time;

" maintainable by software engineers and users;

* portable to other hardware platforms that may host BATMAN & ROBIN (now and in

-3-

BATMAN & ROBIN Artificial Intelligence

the future); and I

explicit, so that the assumptions and constraints inherent in artificially intelligent
platform behavior are apparent.

Using these criteria, many designs were considered in our selection of a Knowledge-Based Finite-
State Automata (FSA) model to implement smart-platform behavior in BATMAN & ROBIN. The
following section discusses several design alternatives that were considered, and our reasons for
rejecting those we did.

3.1.1 LISP and Expert-System Shells

We rejected building a LISP expert system because it was judged too slow, thus decreasing
BATMAN's performance substantially; too time consuming, thus increasing development and 3
maintenance costs; and too incompatible, thus making it difficult to integrate with BATMAN &
ROBIN as well as computer models written in different languages (Butler, Hodil, & Richardson,
1988). We also considered using off-the-shelf expert system shells, but decided against them
because they are expensive, difficult to integrate into BATMAN & ROBRN, and degrading to
BATMAN's performance.

3.1.2 Procedural Decision Method I
One plausible software design was to use the procedural-decision method. Under this scheme, each
platform would have a function dictating how the platform should behave under any given set of I
circumstances. The advantage of this method is that it is easy for programmers to understand and
maintain due to its use of conventional programming techniques. However, there are several
disadvantages with the procedural-decision method: (a) all the decision making would be hard- I
coded in software, thus making the smart-platform logic difficult for nonprogrammers to
comprehend; (b) changing the smart-platform logic under this circumstance would require a major
programming effort and the funding to support it; and (c) the software could easily become 3
unmanageable because this approach lacks a uniform structure.

3.1.3 Weighted-Influence Model 5
Another possibility was to use a weighted-influence model (Holtzman, 1989) to simulate
intelligent decision making. Influence diagrams could be created for all platform types depicting
all the factors in a simulated scenario that the platform would consider, e.g., defense warnings, i
weapons status, or sensor detections; and their relative importance and relationship to one another.
Since this method does not impose traditional logical constraints on the decision-making process,
the behavior of BATMAN platforms could be simulated with higher fidelity. By using weighted n
randomization in the model, "human-like" behavior could be created with the same situation
resulting in different action outcomes. However, since our experience with such systems is
minimal, implementation would be very costly and risky.

3.1.4 Knowledge-Based System vs. Finite State Automata

We considered designing a knowledge-based system which would evaluate production rules to I
determine a platform's behavior. However, it became apparent that platforms have behavioral
states which strongly influence their simulated decision making and subsequent action. This led us
to consider the usage of FSAs, where platform behavior is defined by state. Changing conditions

-4- 1
I

BATMAN & ROBIN Artificial Intelligence

cause transitions between states. However, the rtpresentation of these complex transitions
necessitates the building of a rule base. Therefore, the best solution was judged to be a combination
of a knowledge-based system and FSAs (Raeth, 1990).

3.1.5 Knowledge-Based Finite State Automata

A knowledge-based FSA model works in the following manner. A knowledge database defines
platform FSAs that include action states and the rules which execute state transitions. Also, it
associates each mission with a FSA. For example, the Blue Fighter Aircraft FSA might have states
that include "Remain At CAP Station" and "Kill Enemy". The following rule, "Blue Air Kill
Necessary", when evaluated to true, would cause or execute a state transition to "Kill Enemy":

Blue Air Kill Necessary => Hostile Action or (Warning Red and Weapons Free)

If the logic needs to be changed so that Blue fighters kill only when there is hostile action, one
could simply remove the "or" portion of the rule.

The advantages to this design are (a) implementation and maintenance are straightforward, (b)
modification of smart-platform behavior without additional programming, and (c) comprehension
ot platforms' decisions by examining the database. Because of its simplistic nature, the
performance of this design in BATMAN & ROBIN should be exceptional. The disadvantages of
knowledge-based FSAs are (a) they cannot handle complex weighted decision making, and (b)
creating new FSAs and maintaining the smart-platforms simulation engine requires a
comprehensive understanding of how the model works. The first problem could be overcome by
gradually incorporating the weighted influence model mentioned above. The second is offset by
providing adequate documentation of the model.

3.2 Determinants of Behavior

In BATMAN, there are three determinants affecting platform behavior: (a) the mission of the
platform, (b) the external stimuli that the platform detects during the scenario, and (c) the
platform's interaction with other members of its force, whether Blue or Red. For example, suppose
a fighter's mission is to fly at a combat-air-patrol (CAP) station. Radar may indicate an unknown
air detection. If this platform is the closest available Blue fighter, it would perform a VID.

In this versicq, the following simulated platform missions are incorporated in BATMAN &
ROBIN:

" Blue Fighter Aircraft: Blue-force fighters assigned to CAPs or chainsaws.

" Blue Air Surveillance: Blue-force aircraft assigned to surface surveillance.

" Blue Attack Aircraft: Blue-force aircraft assigned anti-surface warfare (ASuW).

" Blue Air ASW: Blue-force aircraft assigned anti-submarine warfare (ASW).

" Blue Air Tankers: Blue-force tankers assigned to refuel other Blue-force aircraft.

" Blue Ships: Blue-force ships assigned to anti-air warfare (AAW), ASuW, and/or ASW.

" Blue Submarines: Blue-force submarines assigned to ASuW and/or ASW.

-5-

BATMAN & ROBIN Artificial Intelligence I

" Red Fighter Aircraft: Red-force fighters acting as specified in ROBIN for AAW. I
" Red Air Attack: Red-force bombers acting as specificd in ROBIN for ASuW.

• Red Air Surveillance: Red-force bombers acting as specified in ROBIN for surface
surveillance.

• Red Ships: Red-force ships acting as specified in ROBIN for AAW, ASuW, and/or
ASW.

• Red Submarines: Red-force submarines acting as specified in ROBIN for ASuW and/ 5
or ASW.

" Red Anti-Ship Missiles: Simulated anti-ship missiles (ASMs) in BATMAN. 3
" Green Air: Neutral-force aircraft acting as specified in ROBIN.

SGreen Ships: Neutral-force ships acting as specified in ROBIN.I

" Green Submarines: Neutral-force submarines acting as specified in ROBIN.

Also, in this version, the following external stimuli or user inputs affect a Blue platform's behavior
or action:

" Detections: Radar, sonar, ESM, and VID are simulated.

" Enemy Fire: Hits from enemy fire cause battle-damage and can destroy a platform.

" Warnings and Weapons Status: Defense warnings and/or weapons status can affect a
platform's behavior.

" User Input: The user still commands and controls Blue force during BATMAN. I
Lastly, in this version, platform interaction deals primarily with determining how to distribute
enemy detections among available platforms. This is discussed in Section 3.4, Platform I
Interactions.

3.3 Knowledge-Based FSAs 3
The actions associated with a specific mission are determined by its FSA, the rules used by the
FSA, and the type of hostile platform associated with the mission. An FSA consists of a number of
behavioral or action states connected by transitions. A platform can be in any state corresponding
to the FSA for its mission. The state a platform is in determines what action it will take. For
example, if a platform is in a VID state, it will attempt to visually identify or detect a target. Each
transition in the FSA is associated with a rule. In every simulated cycle each platform has the
opportunity to change state. This will occur if its current state has a transition with a ruie that is
evaluated as true. It will continue to change state until it reaches one with no transitions that can
be traversed. Once it has reached such a state (whether it has changed states or not), it will perform
the action associated with that state.

For each mission a hostile platform type can be specified. If this is the case, rules will only be

-6- 1
I

BATMAN & ROBIN Artificial Intelligence

evaluated for the selected hostile platform type, except when hostile action or intent is manifested
and the subject platform has the weapons necessary to engage.

The state transitions are checked in the order specified. For example, if the rule corresponding to
transition 1 evaluates to true, no further transitions out of the current state will be checked.
However, if it evaluates to false, transition 2 will be checked next. In the FSA diagrams that
follow, states denoted by a double circle are initial states for a platform. States denoted with
a dashed circle are control states which are used merely to simplify the FSA and have no
associated action. Currently, the only example of this is "Low Fuel".

3.3.1 Action States

An action state characterizes a platform's ongoing behavior at any given time, such as flying a
chainsaw or intercepting an unknown contact for VID. Some action states have a target or object
of interest. For examplc, the object of interest in a VID state would be an unknown contact and
the object of interest in a refueling state would be the tanker. A platform whose action state
includes an object of interest is said to be occupied, otherwise the platform is unoccupied.
Associated with each action state is a description of the behavior, the platform's speed while in the
state. and the platform's range of interest while in the state.

Range of interest is a distance specified in the database for each platform type. When contacts lie
within a platform's range of interest, the platform will consider taking action on them. A platform
will ignore any contacts outside of its range of interest. Each platform has two ranges, a
surveillance range and a keep-out range. Each action state will use one of these two ranges as
the platform's range of interest. An action state where a platform is occupied will generally use the
smaller keep-out range to avoid being distracted, unless the threat is imminent. Actions states
where a platform is unoccupied will use the much larger surveillance range to maximize the
number of contacts they can consider.

The following sections describe every action state implemented to date. A state's action is
indicated by its name. Any assumptions and constraints concerning the execution of the action
are listed here. The speed listed is used by a platform in that state, unless the platform is following
a specified path or track or unless a hostile platform has a lock on it, in which case full power is
used to evade or engage. The range of interest specifies whether the state uses the platform's
surveillance range or keep-out range. A Blue platform's state can be changed by moving it
towards a new location or towards another platform. This is covered in detail in the Section 3.3.2,
User Input, but is listed briefly here for reference. The current action state of a Blue platform and
its target are shown by the pop-up single-status display in BATMAN.

33.1.1 At/Return Station

Blue air platforms in this state remain at or return to their stations while looking for detections on
which to take action. A station is an area or location to which the platform has been assigned by
the user, e.g. CAPs, chainsaws, tanker stations, or surveillance areas.

Attributes:

Speed: max conserve

-7-

BATMAN & ROBIN Artificial Intelligence 1
Range of interest: surveillance range

Assumptions: Moving a platform with this initial state effectively creates a new station for it. 5
Changing to this state: Move platform to new location. If the platform is pursuing another
platform, it may need to be moved so that the current target would be out of sector range at the new
location.

3.3.1.2 Continue ASW Mission

Blue air ASW platforms in this state remain at their current location or lay sonobuoys as directed 5
by the user while searching for ASW detections on which to take action.

Attributes: I
Speed: m:i: co,..erve

Range of interest: surveillance range I
Assumptions: None. 5
Changing to this state: Move platform to new location.

3.3.13 Continue Mission 3
Blue platforms in this state remain at their current location or move as directed by the user while
looking for detections on which to take action.

Attributes:

Speed: max conserve 3
Range of interest: surveillance range

Assumptions: None. 5
Changing to this state: Move platform to new location.

33.1.4 Continue Track I
Red platforms in this state follow their specified paths or tracks while looking for detections on
which to take action. Green platforms in this state follow their tracks.

Attributes:

Speed: velocity specified for track in ROBIN I
Range of interest: surveillance range g

Assumptions: When a platform returns to its path, it returns to the end of the track vector it was
following when it left. The speed used is that of this vector.

IiChanging to this state: N/A

-8- I

BATMAN & ROBIN Artificial Intelligence

3-3.1.5 Visual Identification

Blue air platforms in this state attempt to intercept a previously specified unknown contact to get
a VID.

Attributes:

Speed: full power

Range of interest: keep-out range

Assumptions: VID does not take platform heading or altitude into consideration. A positive TD can
always be made when within the visual range specified in the database.

Changing to this state: Move platform to a detection which has not bii positively IDed.

3.3.1.6 Escort Threat

Blue fighters in this state attempt to intercept and follow a user-designated, previously identified
aircraft.

Attributes:

Speed: full power until target reached, then target's speed is matched

Range of interest: keep-out range

Assumptions: If the platform is matching the target's speed and has a velocity in between max
conserve and full power, the fuel consumption is linearly interpolated based on its maximum and
minimum fuel consumptions.

Changing to this state: Move platform to a detection which has been positively IDed.

33.1.7 Intercept

Blue platforms in this state attempt to intercept a user-designated contact and stop when in VID
range.

Attributes:

Speed: full power

Range of interest: keep-out range

Assumptions: None.

Changing to this state: Move platform to a detection.

33.1.8 Kill (Platform)

Red or Blue platforms in this state will continue on course and fire on a previously selected target.

Attributes:

-9-

BATMAN & ROBIN Artificial Intelligence I
Speed: max conserve I
Range of interest: keep-out range 5

Assumptions: The following assumptions also apply to Close Kill described below. If a platform
needs to fire weapons, it will turn on both search and target acquisition radar when they are not
already on. Weapons are always fired longest range first, then the next longest, and so on. Weapons 3
never accidentally hit an unintentional target. Platforms can only shoot at one target at a time and
fire once per simulation cycle. Damage to a platform does not diminish any of its capabilities.
Weapons firing disregards platform heading. Currently, launch acceptability regions for deciding a
when to fire weapons are modeled using only ra .ge and altitude.

Changing to this state: Do intercept and platform will transition to Kill if possible. 3
3-3.1.9 Close Kill

Red or Blue platforms in this state attempt to intercept and fire on a previously designated target.

Attributes:

Speed: full power 3
Range of interest: keep-out range

Assumptions: When aircraft close in on ships, they stop moving in when doing so would put them I
within range of the longest range weapon the surface combatant could use against them. Red force
platforms will leave their tracks or paths when in this state. Also, see Kill assumptions above in
addition to these.

Changing to this state: Do intercept and platform will transition to Close Kill if possible. 3
3-3.1.10 Refuel

Blue air platforms in this state attempt to rendezvous with a tanker and refuel. 5
Attributes:

Speed: max conserve 3
Range of interest: keep-out range

Assumptions: Only Blue aircraft consume fuel. i
Changing to this state: Move platform to tanker.

3.3.1.11 Give Fuel

A Blue air tanker in this state will attempt to rendezvous with another Blue aircraft that has
communicated low fuel, and refuel it.

Attributes:

Speed: max conserve

-10- I
I

BATMAN & ROBIN Artificial Intelligence

Range of interest: keep-out range

Assumptions: Can only give fuel to one platform at a time

Changing to this state: Move platform that needs fuel to tanker.

3.3.1.12 Return to Base

Blue aircraft in this state return to their home bases, i.e., carriers, ships, or air fields. Red platforms
in this state return to their initiation points, air fields or ports, and then disappear from the display.

Attributes:

Speed: max conserve

Range of interest: keep-out range

Assumptions: If Blue air platforms home bases are destroyed, they cannot land anywhere else and
will splash. Red platforms use the speed of their last track when returning unless a Blue platform
has a lock on them

Changing to this state: Move platform to mother ship or base.

3.3.1.13 Missile State

Missiles move to their target at specifiable speed.

Attributes:

Speed: full power

Range of interest: None.

Assumptions: None.

Changing to this state: The missile is launched by another platform.

3.3.2 User Input

The move function is now used to supplement or override smart-platforms behavior during the
simulation. Moving a platform can cause three things to happen: (a) if a location is selected, the
platform moves towards it; (b) if another platform is selected and the platform can enter a state
which applies to it, the platform's state will change and the other platform will become the object
of the new state's action; and (c) if the move requested causes any rules to be violated, these rules
will be ignored as long as appropriate.

Moving a platform to a new location can serve one of the following purposes:

* If the platform's current state is At / Return Station, a new station will be created and
the platform will move to it.

" The platform will reevaluate its situation, often abandoning its current action,
particularly if the platform has a station and is placed cut of range of the current target.

-11-

BATMAN & ROBIN Artificial Intelligence I
0 If a platform is returning to base because it is low on fuel, out of weapons or out of U

sonobuoys, the corresponding rule will be ignored uutil the platform is resupplied.

Moving an aircraft to its home base causes it to land. Moving an aircraft to a tanker refuels it. This I
will cause the tanker to abandon any other platforms it is refueling, and move towards the selected
aircraft. 3
Moving a platform to a detected bogie, causes the platform to attempt to intercept the bogie,
abandoning any previous pursuit. The result of this intercept depends on the current Blue warning
level and weapons status, and the level of the detection, e.g., unknown or hostile. First, consider I
the case where weapons status is "tight." If the detection has not been positively identified and the
platform is capable of doing a VID, it will do it. If it has been positively identified and the platform
is capable of escorting it, it will. If the platform can do neither of these two things, it will intercept I
the platform, stopping when within VID range. In the case where the warning level is "red" and
weapons status is "free" against the detection, the platform will behave as before, except that, the I
platform will attempt to kill the detected platform, if possible.

The Reeval Target rules will be ignored for targets designated by moving a Blue platform to a
detection, unless another platform has a lock on the Blue platform itself. If an attack aircraft with 3
no stand-off weapons is moved to a ship, the Close In Dangerous rule will be ignored until the
aircraft lands. If the detection is outside the platform's sector or current area of interest, range
checks will be ignored as long as the detection is being pursued. 3
3.3.3 General Rules

The decision to transition to a new state is determined by evaluating the rule associated with the
transition. Rules fall into two categories: basic rules and composite rules. Basic rules are defined
by stating a condition in the simulation which causes them to be true. Composite rules are defined
in terms of other rules, as modified by the logical operators "and", "or" and "not". 3
Example:

Basic Rule: "Visual Ided : True if target platform positively identified." I
Composite Rule: "No Vid => not Visual Ided" I

Some rules can be overridden by the user. In this case, the rule is made up of a basic rule and an
override rule.

Example: I
Low Fuel Basic : True if this platform has just enough fuel to return to base. In the case ot
tankers, this is true when there is no remaining give fuel.

Use Low Fuel : True if the low fuel check has not been disabled.

Low Fuel => Low Fuel Basic and Use Low Fuel

Thus, references to the Low Fuel rule will only be used if not disabled by the user. 3

-12- I
I

BATMAN & ROBIN Artificial Intelligence

Some rules vary depending on the mission of the platform. These are called variant rules.

Example:

Kill Special Restrictions => Variant

Blue Fighter Aircraft, Blue Air Surveillaace : Blue Air Kill

Others: True, no restrictions

In this example, the Blue Air Kill rule is used for platforms with the Blue Fighter Aircraft and the
Blue Air Surveillance missions. For all other platforms, the rule always evaluates o true.

This section lists all the general rules which are shared by several missions. Additional rules
are listed with the missions themselves. Rules which appear in the FSAs are capitalized. Rules
are ordered by functionality. Rules of the same function are ordered by complexity, with the
simpler rules appearing first. All rule names are printed in boldface. In the following
sections, "target platform" refers to the detected platform for which the rule is being
evaluated.

3.3.3.1 Identification Rules

Visual Ided : True if target platform positively identified.

Ener- Platform : True if target platform has been identified as the enemy through ESM
or other positive means.

Unknown Platform : True if target platform has been identified, but is not known to be

hostile.

Enemy Is Ship : True if target platform is a ship; this is always known.

Enemy Is Sub: True if target platform is a submarine; this is always known.

Enemy Or Unknown => Enemy Platform or Unknown Platform

Not Enemy Or Unknown => not Enemy Or Unknown

Enemy Is Not Air => Enemy Is Ship or Enemy Is Sub

3.3.3.2 Intercept Rules

Intercept Possible: True if platform can intercept target platform, assuming target
maintains present course and speed. Air-to-air intercepts are only considered possible if
they would take fifteen minutes or less.

Intercept Not Possible => not Intercept Possible

Target Reachable => Intercept Possible or In Weapons Range

Target Not Reachable => not Target Reachable

-13-

BATMAN & ROBIN Artificial Intelligence U

Target Reached : True if within VID range of target. U
INTERCEPT OVER => Target Reached or Enemy Gone or Intercept Not Possible

Intercept Restrictions => Variant

Blue Sub, Red Ship, Red Sub : Enemy Is Not Air 3
Blue Ship : False, never intercept

Others : True, always intercept 3
33.33 Combat Rules

Hostile Action : True if target platform has exhibited hostile action. In this case, sometime 3
during the simulated battle it has fired weapons or turned on target acquisition radar. This
is always known.

No Hostile Action => not Hostile Action

Not enough attackers: True if not enough platforms are going after the target platform as
specified by the database, or, if this platform is the closest to the target and some of the
other attackers do not yet have their target acquisition radar on.

Appropriate Weapons : True if this platform has weapons that can be used against the I
target platform.

No Appropriate Weapons => not Appropriate Weapons 3
In Weapons Range : True if this platform is within weapons range of the target platform.

Locked On Me : True if the target platform is the closest with a lock on this platform. I
My TAR Not On : True if this platform does not have its target acquisition radar on.

Warning Red : True if this platform's force is at warning red against the target platform's
type.

Weapons Free: True if this platform's force has weapons free against the target platform's I
type.

Warning Red Free => Weapons Free and Warning Red I
Kill Special Restrictions => Variant

Blue Fighter Aircraft, Blue Air Surveillance : Blue Air Kill

Others: True, no restrictions 3
Kill Restrictions => Warning Red Free and Enemy Or Unknown and Kill Special
Restrictions

-14- I
I

BATMAN & ROBIN Artificial Intelligence

Kill Necessary => Hostile Action or Kill Restrictions

Should Kill => Appropriate Weapons and Kill Necessary

Close In Dangerous Basic : True if the target platform is of a different type than the
detecting platform, e.g., air vs. surface, and the target platform is known to carry longer
range weapons against the detecting platform than it has against the target.

Close In Dangerous => Close In Dangerous Basic and Use Dangerous

Close In Not Dangerous => not Close In Dangerous

Reeval Target Plat => Use Reeval Target Plat or Locked On Me

Higher Priority In Place Kill => Reeval Target Plat and In Weapons Range and Should
Kill

Higher Priority Close In Kill => Reeval Target Plat and Intercept Restrictions and
Close In Not Dangerous and Should Kill

CHANGE TARGET IN PLACE => My TAR Not On and Higher Priority In Place Kill

CHANGE TARGET CLOSE IN => My TAR Not On and Higher Priority Close In
Kill

DO IN PLACE KILL => In Weapons Range and Should Kill

DO CLOSE IN KILL => Intercept Restrictions and Close In Not Dangerous and
Should Kill and Not Enough Attackers and Target Reachable

SHOULD KILL OR CHANGE TARGET CLOSE IN => Should Kill or Change
Target Close In

3.3.3.4 Abort Mission Rules

Low Fuel Basic : True if this platform has just enough fuel to return to base. In the case of
tankers this is true when no give fuel remains.

LOW FUEL => Low Fuel Basic and Use Low Fuel

No Weapons Basic: True if this platform has no more weapons needed for its mission.

NO WEAPONS => No Weapons Basic and Use No Weapons

NO WEAPONS OR FUEL => No Weapons or Low Fuel

NO WEAPONS OR FUEL OR TOO DANGEROUS => No Weapons Or Fuel or Close
In Dangerous

3.3.3.5 Abort Kill Rules

ENEMY GONE : True if detection of the target platform has been lost or is outside its

-15-

BATMAN & ROBIN Artificial Intelligence i

range, and range has not been overridden by the user.

Target Not Hostile => Not Enemy Or Unknown and No Hostile Action

Kill Over => Enemy Gone or No Appropriate Weapons or Target Not Hostile

Not In Weapons Range => not In Weapons Range

IN PLACE KILL OVER => Not In Weapons Range or Kill Over

Other Plats Closer Basic : In the case of a close-in-kill, this is true if this platform does i
not yet have target acquisition radar on and a specified number of other platforms do. In all
other cases, this is true if another platform is intercepting the target platform and is closer.

Other Plats Closer => Use Reeval Target Plat and Other Plats Closer Basic

CLOSE IN KILL OVER => Other Plats Closer or Target Not Reachable or Kill Over 3
3.3.3.6 Refueling Rules

TANKER AVAILABLE: If platform is already rendezvousing with a tanker, this is true 1
if tanker is still available; otherwise, this is true if there is a tanker that the platform can
reach, and the tanker has enough give fuel to provide half a tank.

No Tanker Available => not Tanker Available

Refueled : True if the platform has a full tank of fuel.

REFUEL OVER => Refueled or No Tanker Available

3.3.3.7 User Intervention Rules 3
Use Low Fuel : True if the low fuel check has not been disabled.

Use No Weapons : True if the no weapons check has not been disabled.

Use Dangerous : True if the dangerous check has not been disabled.

Use Reeval Target Plat : True if the reevaluation of target platforms has not been disabled. I
3.3.4 Platform Missions

This section contains descriptions of the simulated missions implemented in BATMAN & I
ROBIN. Included with each mission description is a list of platforms that perform the
mission, the FSA, any specific rules used by the FSA, and any assumptions made pertaining
to the mission. To facilitate reading the documentation, it was organized so that every mission I
begins at the top of a new page.

I
I
I

-16-

I

BATMAN & ROBIN Artificial Intelligence

3.3.4.1 Blue Fighter Aircraft

Mission Description:

Patrol sector against Red aircraft, either at CAP station or chainsaw.

Platform Types: F-14, F-15, F-16, F-18, F-4E, and AH-1T.

FSA:

Refuel
Over32

cwFe
RefuelNedCoeI

Take Do~ I CoeInKllCange TargetKl

Lo ulLow Fuel No Weapons

I _______________________Return

I LaOul0berwisc ToBe

Assumptions:

None.

BATMAN & ROBIN Artificial Intelligence 1
Rules Specific to FSA: 3

Hostile ESM : True if hostile radar emissions have been received from target platform. 3
Vid Or ESM => Visual Ided or Hostile ESM

Out Of My Range Basic: True if target platform is not within sector radius of CAP station.
If platform is on a chainsaw, station is considered to be closest end of chainsaw.

Use Range: True if the range check has not been disabled. 3
Out Of My Range => Out Of My Range Basic and Use Range

In My Range => not Out Of My Range 3
Blue Air Kill => Enemy Platform and In My Range and Vid Or ESM

Not 'Reing Visual IDed: True if no closer platform is currently attempting to VID the 3
target platform.

No VID => not Visual IDed 3
Vid Warning => Variant

Blue Fighter Aircraft: Warning Red Free U
Blue Air Surveillance : Warning Red

Others : False

ESM VID Warning => Hostile ESM and VID Warning 3
Not ESM VID Warning => not ESM VID Warning

NEED VID => No VID and Not Being VIDed and No Hostile Action and In My Range 3
and Not ESM VID Warning and Intercept Possible

VID DONE => Visual IDed or Enemy Gone or Out Of My Range or Hostile Action or
Other Plats Closer or Intercept Not Possible

I
U
I
I

-18- I

I

BATMAN & ROBIN Artificial Intelligence

3.3.4.2 Blue Air Surveillance

Mission Description:

Patrol surveillance area against Red ships.

Platform Types: E-2Q, EA-6B, OV-1OA, E-3B, UH-1N, CH-46, and CH-53.

FSA:

Close In Kui Over

-19-s I Kl

BATMAN & ROBIN Artificial Intelligence 1
Assumptions: U

None. 3
Rules Specific to FSA:

Hostile ESM : True if hostile radar emissions have been received from target platform.

VID Or ESM => Visual IDed or Hostile ESM

Out Of My Range Basic : True if target platform is not within sector radius of CAP station. 5
If platform is on a chainsaw, station is considered to be closest end of chainsaw.

Use Range : True if the range check has not been disabled. 3
Out Of My Range => Out Of My Range Basic and Use Range

In My Range => not Out Of My Range I
Blue Air Kill => Enemy Platform and In My Range and VID Or ESM

Not Being Visual IDed : True if no closer platform is currently attempting to VID the U
target platform.

No VID => not Visual IDed U
VID Warning => Variant 3

Blue Fighter Aircraft: Warning Red Free

Blue Air Surveillance : Warning Red 5
Others: False

ESM VID Warning => Hostile ESM and VID Warning 3
Not ESM VID Warning => not ESM VID Warning

NEED VID => No VID and Not Being VIDed and No Hostile Action and In My Range U
and Not ESM VID Warning and Intercept Possible

VID DONE => Visual IDed or Enemy Gone or Out Of My Range or Hostile Action or 3
Other Plats Closer or Intercept Not Possible

II

I

BATMAN & ROBIN Artificial Intelligence

3.3.4-3 B3lue Attack Aircraft

Mission Desrrnption:

Attack Red ships.

Platform Types:- A-6, A-7, A-18, AV-8B, and A-4M.

FSA:

Refuel Refuel Continue
Over Mission

2
User
lint Do Close

In Vill

inteceptLow
Oneret Close In Fuel

Kill Over
Close
Kill 1

2
Should Kill Or Change Target No Weapons Or

Coange Target close inFulOTo

(Intercept ~Low FuelReunT

User
Ilng t

Rules Specific to FSA:

None. See Section 3.3.3, General Rules.

Assumptions:

None.

- 21 -

BATMAN & ROBIN Artificial IntelligenceI

3.3.4.4 Blue Air ASW

Mission Description:I

Locate and attack Red submarines.

Platform Types: P-3C, S-3B, SH-2F, SH-3H, and SH-60B.

FSA:

ContnueClose I
Shoul KilllO

Chaange Target
Over Use Closese _InRefuels In U

Intercet CIntgercepte

Or uellon Or e

Refuel 1nu

Uer nI

Refuel Fuel Rertuue

To Base

Assumptions:

A passive sonar cross detection is considered a positive identification.3

-22-

BATMAN & ROBIN Artificial Intelligence

Rules Specific to FSA:

No Sonobuoys Basic: True if this platform is out of sonobuoys.

Use No Sonobuoys: True if the no sonobuoys check has not been disabled.

No Sonobuoys => No Sonobuoys Basic and Use No Sonobuoys

NO SONOBUOYS OR FUEL => Low Fuel or No Sonobuoys

- 23 -

BATMAN & ROBIN Artiticial Intelligence I

33.4.5 Blue Air Tankers

Mission Description:

Refuel other Blue aircraft, including those of other task forces, meeting them half way.

Platform Types: KA-6D, KC-10, KC-130, and KC-135.

FSA: 3

Aircraft Needs Fuel

Staio 2 GieFe

No Aircraft Needs Fuel I

I
Low Fuel Low Fuel ,I

VReturn
To Base

Assumptions: U
A tanker refuels itself completely from its give fuel, unless it is enroute to refuel another
platform, in which case it takes only what it needs to return to base.

Rules Specific to FSA:

AIRCRAFT NEEDS FUEL: True if an aircraft has requested refueling.

NO AIRCRAFT NEEDS FUEL => not Aircraft Needs Fuel 3

-24- I
I

BATMAN & ROBIN Artiticiajl Intelligence

3.3.4.6 Blue Ships

Mission Description:

Attack any Red air, surface, and subsurface platforms in weapons range.

Platform Types: Nimitz, Ticonderoga, California, Iowa, Knox, Kidd, Perry, Spruance, Leahy,
Belknap, and Tarawa.

FSA:

Assumptsons:

None. s SeecIn I..3 Genera Rules.c

Ki~~~~~~~~ 25 I-vrItr)tOe ilOe

BATMAN & ROBIN Artificial IntelligenceI

3.3.4.7 Blue Submarines

Mission Description:I

Attack Red submarines or ships detected.

Platform Type-: Los Angeles.

FSA:3

Change Target Cag

Clos In arge
CloseIn I Plae InP13I
Ki II Ovr Iterc)t verKillOve

Close

asmp gtiocep

InjiI

None.

Rules Specific to FSA:

None. See Section 3.3.3, General Rules.

-26-

IBATMAN & ROBIN Artificial Intelligence

3.3.4.8 Red Fighter AircraftI Mission Description:

* Attack Blue aircraft.

Platform Types: MiG-19, MiG-21, MiG-23, MiG-25, MiG-27, MiG-29, MiG-31, Su-7, Su-9, Su-
15, and Su-24.

ChangeTarget antge

4n alIn
TolBas

one.I lceRtr

ruaSpck to BSAe

2 7

BATMAN & ROBIN tArtificial IntelligenceU

3-3.4.9 Red Attack Aircraft

Mission Description:I

Attack Blue ships.

Platform-Types: Bear, Badger, Blinder, Backfire, Blackjack, MiG-23, MiG-27, Su-7, and Su-24.

FSA:3

TReturn

Qiange 4 Target In~ae

Assumptos: ls n oWa

one. InPaeRtr
rlSpcack to Base

one See SetOv. er a Rules.on

-28-6 I
Kill

BATMAN & ROBIN Artificial Intelligence

33.4.10 Red Air Surveillance

Mission Description:

Find Blue ships.

Platform Types: Bear and Mainstay.

FSA:

Close In Kill Over

Do Close In Kill
Change Target

Close In

Assumptions:

None.

Rules Specific to FSA:

None. See Section 3.3.3, General Rules.

- 29 -

BATMAN & ROBIN Artificial IntelligenceI

3.3.4.11 Red Ships

Mission Description:

Attack Blue air, surface, and subsurface platforms detected.3

Platform Types: Kara, Kashin, Kiev, Kirov, Kresta, Krivak, Kynda, Moskva, Slava, Sovremeny,
and Udaloy.

FSA:

Change TargTaReget

Ta Bas

Assmptons 3
NoCone.as nN epn

on. SSecto I.n3 GeealR le Reur

-30Bas

TrackI

BATMAN & ROBIN Artificial Intelligence

3.3.4.12 Red Submarines

Mission Description:

Attack Blue surface and subsurface platforms detected.

Platform Types: Charlie II, Delta-I, Echo II, Foxtrot, and Victor III.

FSA:

Change

nTarget

r ^~~~~~ C\InPac o Weaon

CoseBas

Assumptions:

None.

Rules Specific to FSA:

None. See Section 3.3.3, General Rules.

-31 -

BATMAN & ROBIN Artificial Intelligence

I
3.3.4.13 Red Anti-Ship Miisiles (ASMs)

Mission Description:

Destroy Blue ships. No decision-making is employed by the ASMs themselves.

ASMs: AS-2, AS-4, AS-5, AS-6, and AS-15.

FSA:

I
MissileI
State

Assumptions:

Detection is not modeled for ASMs and they are automatically able to locate their targets. U
Rules Specific to FSA:

None. See Section 3.3.3, General Rules.

I
I
I
I
I
I
I

- 32-

I

BATMAN & ROBIN Artificial Intelligence

33.4.14 Green Air, Green Ships, and Green Submarines

Mission lDescription:

Green or neutral platforms follow their tracks or paths and activate their sensors as
specified in ROBIN. Green platforms identify themselves and make no decisions in
BATMAN.

Platform Types: All Green platforms.

FSA:

Continue
Track

Assumptions:

Green platforms do not fire weapons. Neutral platforms identify themselves when the
following conditions are true (Warning level refers to that of the Blue force):

Green Aircraft:

Warning Red and within 100nm of air search radar

Warning Yellow and within 50nm of air search radar

Warning White and within 20nm of air search radar

Green Ships:

Warning Red and within 20nm of combatant

Green Submarines:

Warning Red or Yellow and actively searched

Rules Specific to FSA:

None. See Section 3.3.3, General Rules.

- 33 -

BATMAN & ROBIN Artificial Intelligence U

3.4 Platform Interactions I
Important aspects of intelligent platform behavior are determining who pursues whom and who
will fire on whom. When making these determinations, we have adopted the following guidelines 1
for Blue and Red forces:

* Platforms should attack or pursue the contacts that are closest to them.

" Platforms of the same force should not "gang-up" on, or all pursue a single threat while
ignoring others. 3

* Platforms should break-off an attack or pursuit to defend themselves from a more
imminent threat, e.g., a Red platform has a lock on a Blue platform.

• Platforms should relinquish a pursuit to a closer platform of the same force.

To implement these guidelines, we assumed that platforms of a particular force, Blue, Red, or
Green, can all communicate with one another, and that this communication happens

instantaneously. All detections are communicated to all other members of a force. Also,
information about who is shooting whom, who is pursuing whom, and the locations of all members
of a force is available to all of its members. Rules in the FSA for each platform use the following I
information about any detection within a platform's area of interest to determine which contact, if
any, the platform will pursue:

• Detection level (unknown, neutral or hostile ESM, ESM or positive ID).

* Location. 3
* Hostile Action: the contact has or had a weapons lock on a member of the force, or has

fired weapons.

" Current number of attackers.

" Number of friendly platforms with a weapons lock on the detected platform or contact.

* Closest interceptor.

" Closest interceptor with a weapons lock on the contact.

* Whether or not the contact has a weapons lock on the detecting platform. (A platform
always knows when a contact has a weapons lock on it, but not all weapons require I
target acquisition radar.)

In general, a platform chooses a target to attack from the list of contacts in its area of interest and
sector based on the priorities which follow. For the exact criteria for target selection, see the FSA
and rules for the appropriate mission type under Section 3.3.4, Platform Missions.

* The closest platform with a lock on it will be chosen first.

" The closest platform having exhibited hostile action, which is not already being
attacked by its specifiable maximum number of attackers, will be chosen next. I

-34 -

I

BATMAN & ROBIN Software Design

The closest, highest priority platform which is not already being attacked by its
maximum number of attackers will be chosen next.

"Mairimirmr number of attqcker-" in the above list refers te a vahue siecified in thc "atabasc fc.rcach
platform type. Restricting the number of attackers for each target prevents the ganging-up problem
mentioned earlier, and forces a more reasonable pairing-up of targets and attackers. An attacker
can override this restriction if he is not preoccupied, and is already within weapons range of the
target.

In addition to attacking, Blue platforms must often intercept and VID unknown contacts. Blue
platforms will chose the closest contact that is not being intercepted by a member of the same force
which is closer to the contact. For the exact criteria, see the FSA and rules for the appropriate
mission type in Section 3.3.4, Platform Missions.

Part III: Software Design

4.0 Purpose and Scope

This part of the documentation provides an overview of BATMAN & ROBIN software. It includes
descriptions and diagrams of the system's software packages, data structures, and interfaces, and
can be used as an aid by those interested in modifying and enhancing the system. The next section
provides an introduction to the adopted software-design philosophy, with some guidelines to
follow when modifying the software. The remaining sections in this part describe for BATMAN
& ROBIN each software component, global data structures, software, packages, and software
interfaces to other computer models. For implementation details on specific BATMAN & ROBIN
packages, refer to the commented code in the directory: /nprdc/wargame/batman.

5.0 Introduction

To help provide a better understanding of BATMAN & ROBIN software, this section outlines the
design philosophy and system guidelines.

5.1 Design Philosophy

The intent of the human-computer interface is to provide intuitive ease and flexibility in
constructing and gaming tactical scenarios. To achieve these goals and allow for future system
expansion, much effort has gone into creating generic data structures, modularized software, and
functional standards in a object-oriented-programming style that provide a natural mapping
between the system's human interface and the code-level design. These principles of the interface
and the software packages should be maintained by all persons interested in contributing to this
system.

5.2 Software Caveats

Before attempting to modify the software, be aware of the following:

BATMAN & ROBIN is currently under development. Modifications and
enhancements are made continually. Changes made by others will not be supported by

- 35 -

BATMAN & ROBIN Software Design U
the original developers. These include alterations to (a) the direct-manipulation human- i
computer interface, (b) the format and contents of scenario data files generated by
ROBIN and executed by BATMAN, (c) the algorithms, code, FSAs, transition rules,
a.pnd *.apa~ep invnlv-d in ni-tfn,. I-ebavie-, (d) the database editing tools, (e) the I
windowing system's structural design, (f) the code and databases used for displaying
maps, and (g) the grid coordinate system. 3
BATMAN & ROBIN is a complex system. Tuning the software to run efficiently with
different databases and algorithms requires an understanding of several components.
Software modifications may aprear feasible, but without knowing the limitations of the I
graphics and computational structures, they may become burdensome or impossible
tasks. Many of these issues are beyond the scope of this document and direct
consultation with the developers is advisable.

Contact NPRDC before changing BATMAN & ROBIN. Many modifications may have
already been scheduled for a future date, rejected because of limited customer interest,
or suspended because of technical problems in the system's design.

53 Guidelines for Adding a Computer Model 3
BATMAN & ROBIN software has been designed and developed as a generalizable, object-
oriented, modular system. This readily lends itself to the addition of other computer models to
increase the level of fidelity or functionality of BATMAN & ROBIN. To successfully incorporate I
a new simulation model, some programming guidelines must be followed, specifically:

" The added model must be written in a language compatible with the C programming
language and the Sun-4 series computers, such as FORTRAN 77, Pascal, Modula-2, or
Ada.

" The new model must consist of functions with well defined software interfaces that are i
independent of, and compatible with, BATMAN's existing simulation models.

* Any input data the added model requires must be completely separate from the existing
BATMAN & ROBIN databases.

* Any output produced by the new model must be initialized and generated 3
independently from BATMAN's output.

" The computer model must not require any user interaction, and it must operate only on
data from files or parameters passed to it from BATMAN.

* For the mouse to track smoothly, it must be serviced once every 15 milliseconds. To
accommodate this requirement, the model's calculations must be sectioned into I
reasonable pieces so it can return to BATMAN within this time interval.

* If the simulation model requires functional changes to the existing BATMAN software, 3
these changes must be coordinated with and performed by NPRDC.

I
-36 - !

I

BATMAN & ROBIN Software Design

Parameter Parameter Scenario
Database Database ROBIN
EditorDatabase

Graphic Graphic User
Editor Database Database

Figure 1. BATMAN & ROBIN Software Components

It is recommended that the added computer model's interfaces or hooks in BATMAN & ROBIN
software be written by NPRDC. Since NPRDC is intimately familiar with the software, these
interfaces can be implemented efficiently and effectively. Moreover, it eliminates the need for the
modeler to have extensive knowledge of the internals of BATMAN & ROBIN.

Because the complexity of simulation models vary dramatically, NPRDC cannot be responsible for
the performance of BATMAN & ROBIN after these models have been incorporated. The current
version of BATMAN & ROBIN has been highly optimized for speed. Adding a compute-intensive
model will likely degrade BATMAN's performance.

6.0 Software Components

BATMAN & ROBIN consists of four databases: Parameter, Graphics, Scenarios, and Users; and
three processes: BATMAN & ROBIN, a Parameter-Database Editor, and Graphics Editors. This
software composition is illustrated in Figure 1.

The Parameter-Database Editor is used to create and modify the attributes of objects in the
Parameter Database, e.g., the fuel-consumption rates of air platforms. Additionally, important
platform parameters can be adjusted on a scenario-by-scenario basis using BATMAN & ROBIN's
Graphical Frontend to the Database (GFED) (see Section 8.10, Database and Graphical
Frontend Packages). The GFED is helpful in exploring "what if' scenarios.

To date, the Parameter Database is stored as an ASCII text file. Any editor that creates strict ASCII

- 37-

BATMAN & ROBIN Software Design I
files can be used to modify the Parameter database. The developers have used the vi editor, a
standard Unix utility (SunOS Reference Manual, 1990). BATMAN & ROBIN retrieves values
from this database using a hybrid ndbm relational database model (see Section 11.0, Parameter
Databac).

The Graphic Editor is used to create and modify BATMAN & ROBIN's graphics or icons. The
graphics supported by BATMAN & ROBIN are Sun standard rasterfiles (Pixrect Reference I
Manual, 1990). In general, all icons and graphic objects should be monochrome since BATMAN
& ROBIN apply their own colors to these objects. The developers have used commercial Sun
graphics editors, e.g., IslandPaint, and a custom software program, pain44, developed by NPRDC
to create icons and graphic objects. None of these programs are discussed in this document.

7.0 BATMAN & ROBIN Global Data Structures 3
Table 1 lists global data structures that are used throughout BATMAN & ROBIN software, and
identifies the header file where each data structure is defined.

The SCENARIOHEAD data structure, accessed through sh->, contains both static global data and
miscellaneous scenario-specific data. The static global data is initialized at the start of BATMAN
& ROBIN and is available during its entire run. An example of static global data is sh->debug_on,
which is a boolean value indicating whether BATMAN & ROBIN is being r:in in debug mode.

Table 1 I
Data Structure to File Mapping

Data Structure File Contents

SCENARIOHEAD scenario.h scenario and global data
THEATER scenario.h scenario log
CONSOLEFORCE force.h blue-force resources
PATHFORCE force.h path-force resources 3
STATUS_REC force.h group or sub resources
TYPE REC force.h platform type information
PLATFORM platform.h one platform
PROJECTILE platform.h one projectile (weapon)
DETECTNODE platform.h one detection-unit (sensor)
BLUETEMP init con.h blue-force template
PATHNODE init.path.h path-force swarm information
PATH_VECTOR init.path.h path-force flight information
BASEPORT initpath.h base/port information

I
- 38-I

I

BATMAN & ROBIN Software Design

The SCENARIO HEAD also contains a pointer to the THEATER data structure, which contains a
log of all scenarios currently defined. For more information on the THEATER structure, see Section
8.1.10, Scen db.access.

To start BATMAN, the sh->scen._num field of the SCENARIOHEAD is set to the appropriate
scenario number. The CONSOLE FORCE data structure (Figure 2) and the PATHFORCE data
structures (Figure 3) are then built. Access to these structures is gained through the
SCENARIO HEAD: sh->cfh, sh->red..ph, and sh->grn.pfh for Blue-, Red-, and Green-forces,
respectively.

The CONSOLE FORCE contains all Blue-force tactical resources organized into one to three task
forces: Task Force Alpha (TFA), Bravo (TFB), and Charlie (TFC). Each task force, which can be
centered around an aircraft carrier, battle ship, or land base, is divided into group and sub
platforms. Information specific to the group and sub categorizations is contained in
STATUS RECs. Each STATUS REC contains a list of TYPERECs for each different type of
platform in the group. Attached to each TYPEREC is a list of PLATFORMs of that type. There is
one PLATFORM structure for each platform in the simulation. For example, if TFA had four F-14
aircraft, there would be one TYPE REC for the F-14 and four PLATFORMs, one for each F-14.
Included with each console-force PLATFORM are the weapons (PROJECTILEs) and sensors
(DETECTNODEs) that the PLATFORM carries.

One of the plattorms in the group category must be a guide or home-base platform, e.g., an aircraft
carrier. This document uses three terms to refer to generic platform categories: guide, mother, and
sub. A guide platform is the primary one in a task force, capable of carrying sub platforms and of
being preset in ROBIN. A guide platform may be a large or small aircraft carrier, a land base, or
something else, e.g., a Tarawa class ship. A mother platform is capable of carrying sub platforms.
For example, a mother platform might be a Kidd class ship. Note that a guide platform is a mother,
but that a mother is not necessarily the task force's guide. A sub platform might be an aircraft, e.g.,
F-14, or a weapon, e.g., Phoenix missile.

BATMAN builds two PATH FORCE data structures: one for the Red force and one for the Green
force. Each PATHFORCE has a list of TYPERECs for each different type of platform in the
force, e.g., a Badger aircraft. Attached to each TYPE_REC is a list of PLATFORMs of that type.
There is one PLATFORM structure for each platform in the force. For example, if the Red-force
had four Badger aircraft, there would be one TYPE REC for the Badger and four PLATFORMs,
one for each Badger. Attached to each path-force PLATFORM is information describing how the
platform moves in BATMAN, weapons (PROJECTILEs), and sensors (DETECT NODEs).

For ROBIN, only skeletal versions of the CONSOLE FORCE and PATHFORCE data structures
are built. These contain just the pertinent information that ROBIN needs, e.g., database parameters
from a platform's TYPE REC. Additionally, a different set of data structures is built and
maintained during ROBIN. These include BLUETEMP, PATHNODE, PATHVECTOR, and
BASE PORT data structures.

- 39-

BATMAN & ROBIN Software Design3

-Z KE PORCi ~ FORCF

TYPE PLATE FR FI

RFC FOR
N~mirI
X I

TYPE 'E TYPE
Figure2. BATAN CONOLEJOR E_ LAT utr

-40- IE
REC FOR

UBATM.AN & ROBIN Software Design

SCNROHA
IHA

IOSL PT AH
FOCIOC OC
(Bu)(edUGen

TYEILTPA LA YE LTPA
BagrD-0IOMFR

IE O MF R O M--
vetrIvcoI eto etrIvco

U ~YP
Figur 3. AT A TYP ORE Dat Stu tu e

II

BATMAN & ROBIN Software Design

As illustrated in Figure 4, BLUETEMP structures are used to build a template of a scenario's i
Blue-force. Since ROBIN only needs to know what Blue-force resources are in a scenario, the
BLUETEMP scaffold makes for an efficient implementation.

Figure 5 illustrates the data-structure representation of the Red- and Green-forces during ROBIN,
with a sketch of how it would appear to the user. The package robinvectors (see Section 8.9.10)
builds, maintains, and manipulates this path-force data structure. ROBIN uses PATHNODEs and I
PATHVECTORs to build a forest of trees, where each tree represents a swarm of platforms. All
of the trees are threaded together by PATH NODE next pointers to build the forest. Attached to
each PATH NODE are a list of PATHVECTORs describing how the swarm moves along that
section of the path. When the user breaks apart a swarm, it creates a new level of PATHNODEs
for that swarm's tree (see the Badger swarm from Figure 5).

Each path must initiate from a base (air platforms) or port (surface and subsurface platforms).
Bases and ports are implemented in the basesandports package (see Section 8.11.1) using
BASEPORT data structures. A BASE PORT contains an identification number and the latitude-
longitude coordinate of the base or port.

8.0 BATMAN & ROBIN Software Packages

The following sections provide an overview of the BATMAN & ROBIN software. For purposes
of this description, the software packages are organized into the following groups: (a) Initialization
ajid Control, (b) Loadout and Vector-Logic Grid, (c) Deployment, (d) BATMAN Simulation, (e) I
Smart Platforms, (f) EW/ESM, (g) ASW, (h) Performance Measures, (i) ROBIN, (j) Database and
Graphical Frontend, and (k) Utility. Within each of the following sections, the software packages
are described in alphabetical order.

8.1 Initialization and Control Packages

The packages in this group setup the window environment, control the execution flow of
BATMAN & ROBIN, initialize scenario data structures, and provide an interface to the user
database. u
8.1.1 Event ctrl

This package provides an interposed event function and other miscellaneous event-related
functions. The interposed event function (SunView Programmer's Guide, Chapter 17 - Notifier,
1990) provides capabilities to monitor all events as they occur and react to certain events in non-
standard ways depending on the application. Hence, it provides the programmer with some
flexibility in the way events are handled. BATMAN & ROBIN use this interposition feature to
screen for special interrupt events, e.g., ctrl-p, which pauses the simulation.

8.1.2 Init 3
This package contains functions that perform once-only start-up initialization and clean-up for
program exit. 3

l
-42 - i

I

BATMAN & ROBIN Software Design

blue-templa e

BLUE-BJEEP

TASK nex, TASK
FORCE A FRE

head

BLUE TEMP BLUE TEMP BLUE TEMP BLUE TEMP

Nimtz
Num: head next next

head
next

BLUETEMP BLUE TEMP BLUE TEMP

keltcnap head
Nu2: 2

BLUE TEMP BLUE TEMP BLUE TM

'Hum20' next -[uE: 1ea

Figure 4. ROBIN Bluc-Force Template

- 43 -

BATMAN & ROBIN Software DesignI

DATA STRUMURE R[rPRrSENTATIONI

P0DEPNODE PNODE u

FIPVEC

PNODE -PNODE /PNODEI
l~~xt j VEC Inl

PVEC I PVEC PVEC Eb
N2n2 Num2 vec Nm

PVC2/PVEC PVECI

*o PE vcc 2 v

PVEC ietPVBC

vec 3PNODE /
PVEC PE

vec2 Bage Nuec

P PNODE =PATH-NODE

PVEC = PATH VECTOR

APPEARACE [N ROBIN

Badger DC-10Ed

0

0 0

22 12

Figure 5. ROBIN Path-Force Data Structures

-44-I

BATMAN & ROBIN Software Design

8.1.3 Init con

This package initializes BATMAN & ROBIN's Console force data structures and panels. The
scenario number must be known before this package can be called, and is used to retrieve the
appropriate scenario from the Scenario Database. This package reads in the scenario which
specifies the types and numbers of platforms. Then, it allocates records and fills them in with
information obtained from the Parameter Database. This package will produce one
CONSOLEFORCE data structure, including all STATUS_RECs, TYPE RECs, PLATFORMs,
PROJECTILEs and DETECTNODEs that belong to the task force (see Section 7.0, BATMAN &
ROBIN Global Data Structures).

8.1.4 Init_path

This package initializes the Path force data structures, i.e., Red and Green forces. The scenario
number must be known before this package can be called, and is used to retrieve the appropriate
scenario from the Scenario Database. Also, it will build a list of flight-path information for each
platform. Therefore, this pa'kage will produce one PATHFORCE data structure, including all
TYPE RECs and PLATFORMs that belong to the raiding force (see Section 7.0, BATMAN &
ROBIFN Global Data Structures).

8.1.5 Jtids antenna

This package creates and destroys the antenna lists attached to the TYPERECs of JTIDS-capable
platforms. Since every PLATFORM has a pointer back to its TYPEREC, all platforms have access
to their antenna list, which represents the antennas that are available for each type of JTIDS-
capable platform, as designated in the Parameter Database (see Part III of this document). For more
information, see Section 9.2, JTIDS.

8.1.6 Main

This package contains the main functic' 'ind is the primary control package for BATMAN &
ROBIN. This package also contains the -clarition of the global SCENARIO_HEAD structure,
i.e., sh.

After the main function completes BATMAN & ROBIN initialization, it enters a while loop that
dispatches window events. Additionally, this while loop processes any programmer defined loop
functions (loop here is a reference to the while loop). Loop functions are used, among other things,
to control the BATMAN simulation and the ROBIN viewer. For example, the routine
simulation-engine is added as a loop function to drive the BATMAN simulation. Refer to the
package misc below for more information.

8.1.7 Misc

This package contains functions that are global utilities used by other BATMAN & ROBIN
software packages. Most importantly, this package contains the routines set_loopf unc,
insert loop junc, and removeloop func which add and remove loop functions from BATMAN
& ROBIN. Refer to the package main above for more information.

8.1.8 Playback

This package implements BATMAN & ROBIN's record and playback facility. Playback is a

- 45 -

BATMAN & ROBIN Software Design I
feature that records user's actions during a BATMAN scenario, and then programmatically I
recreates the individual's actions during the management of the battle. This is accomplished by
recording all user events that occur during allocating, deploying, and managing tactical assets, then
regenerating those actions during playback.

8.1.9 Readobj

This package contains routines that will read platform, weapon, and sensor data from the Parameter
Database. Both the init con (see Section 8.1.3) and initpath (see Section 8.1.4) packages use
these routines to build the CONSOLEFORCE and PATH FORCE data structures.

8.1.10 Seen db access

This package provides routines to build the THEATER data structure and to maintain an index of
scenarios from the Scenario Database. These routines are used primarily by ROBIN. For more
information, see Section 12.0, Scenario Database, in Part III of this document.

One THEATER record for each warfare-theater is subsumed under the the SCENARIOHEAD, and m
contains a log of all scenarios in that area. To date, warfare-theaters are, but not limited to, the
following areas: Caribbean, Japan-sea, Bering-sea, Kamchatka-peninsula, South-east-asia,
Arabian-sea, Persian-gulf, Mediterranean, North-atlantic, and Murmansk

8.1.11 TImer

This package provides a set-up and a simulation timer. The set-up timer tracks the amount of time
the user takes to loadout and deploy Blue forces. The simulation timer tracks the amount of time
the user is engaged in battle. This package also contains routines to control pausing and unpausing
the simulation.

8.1.12 User db access

This package provides routines to interface with the Users Database. For more information, see
Section 14.0, User Database, in Part III of this document.

8.1.13 User funcs I
This package controls the human-computer interface when the user is performing one of the
following functions: I

" Listing all users in the User Database.

* Adding a user to the User Database. I
* Deleting a user from the User Database.

" Selecting a user to run BATMAN & ROBIN.

" Selecting to run BATMAN & ROBIN in "demo" mode.

This package contains Panel create and P ,el notify functions to coordinate the above activities.
Access to these features is gained through the routine user funcs, exported by this package.
user.juncs will display a log of all users, and a Panel with the buttons: "Add User", "Delete User",

-46- m

I

BATMAN & ROBIN Software Design

"Demo", and "Exit".

8.2 Loadout and Vector-Logic Grid Packages

This group of packages creates the tactical-situation screen, handles weapons and antenna loadout
for Blue-force air platforms, and implements the vector-logic grid feature.

8.2.1 Grid

This package is responsible for allowing the user to define the range of the vector-logic or
defensive grid, and for updating the map and grid when the user chooses to zoom in and out. The
specifications for the grid are as follows:

" The simulation plane is assumed to be a Cartesian coordinate system with Victor/Lima

(V/L), the defended point, at the origin, (0,0). The grid is drawn with its center at V/L.

" The vector-logic grid is displayed for a full 360 degrees.

* A fixed-range increment for grid labels is used, i.e., 50 nautical mile tic marks.

* Angle or azimuth increments are expressed in integers, e.g., 15 degrees.

8.2.2 Jtids antenna-load

This package allows users to select antennas for TIDS-capable Blue-air platforms, and to specify
patterns for chosen antennas. JTIDS-ar:enna selection is accessed from the JTIDS button on the
Blue Force Loadout Panel.

If the system allows the specification or selection of a particular antenna, then the relevant aircraft
icon depicts the location of all possible antennas that can be activated. When a location is selected,
the system presents a set of antenna patterns. Once an antenna is selected, it is activated on the
platform, and the system depicts the chosen pattern at the particular location. The antenna can be
deactivated by reselecting the location. If an antenna cannot be specified by the user, then the
system displays the default antenna location(s). Table 2 lists the current default specifications of
antennas for each ITIDS-capable aircraft. For more information on JTIDS, see Section 9.2, JTIDS.

8.2.3 Loadout

This package contains functions for creating and interacting with Blue loadout panels which
provide the human-computer interface for placing weapons and antennas on Blue air platforms.
These panels are created by traversing the list of TYPE RECs attached to the force's sub platform
STATUSREC. The Blue loadout panel includes:

* An icon that transitions to JTIDS antenna loadout.

* A large icon of the mother platform with small icons for the sub platforms and weapons
that are on it.

" A variable panel-choice item with icons of all the possible weapons that can be loaded

out on either of the two sub platforms currently displayed.

- 47 -

BATMAN & ROBIN Software Design I

Table2 I
Default Antenna Specifications for JTIDS-Capable Aircraft n

Platform Antenna Receive Transmit I
E-2C Left Omni Omnia

Right Omni Omnia

EA-6B Left Omni Omnia

Right Omni Omnia

F-14 Top Omnia 1800

Bottom Omnia ---

F/A-18 Top Omnia 1800

Bottom Omni" I
S-3B Top Omnia 1800

Bottom Omnia ---

aUser cannot change this antenna's default specification during BATMAN at this time. n

8.2.4 Loadoutjmap I
This package creates the tactical-situation screen. The scenario contains all of the information
necessary to construct this screen. At this stage of development, the tactical-situation display
contains the following:

" A map of the warfare-theater.

" The location of Red- and Green-force bases and ports.

" An icon for each Blue task-force. I
* Blue-force DEFCONs.

* A messages icon (if there are any messages for the user to read).

• A Grid icon that, when selected, will leave loadout and advance to grid definition.

• A Deployment icon that, when selected, will bypass grid definition and advance
directly to deployment. n

-48- U
I

BATMAN & ROBIN Software Design

&2.5 Loadout tf

This package contains functions for creating and interacting with Blue task-force display panels
which contain large icons for the force's home-base or guide and mother platforms. Refer to
Section 7.0, BATMAN & ROBIN Global Data Structures, for a description of guide, mother,
and sub platforms. Task-force display panels are created by traversing the list of TYPE RECs
attached to the force's group platform S rATUS REC.

When a mother platform on a task-forct display panel is selected, the user is "going aboard" the
mother with the intention of loading weapons and/or JTIDS antennas onto the task-force's air
platforms. When this happens, control is passed to the loadout package (see Section 8.2.3).

8.3 Deployment Packages

The packages in this group coordinate deploying Blue task forces in the warfare theater, defining
the JTIDS network, and setting initial alert levels for sub platforms.

8.3.1 Alert

This package contains routines to model alert or readiness states on guide and mother platforms.
Three alert states are available: Alert 5, Alert 15, and Alert 30. The minutes to launch time are not
simulated.

An ALERTHEAD data structure is created and maintained for every mother platform in the
Console force. The types of platforms in the Alert PANEL WIN are duplicates of those found in
the respective sub Launch F'.4.JEL_WIN. Platforms are moved among the readiness states with the
function find_plat onlevel, which returns the first sub platform at the specified alert, and
put_plat onlevel, which updates the sub platform's Alert state. Only sub platforms on Ready 5
can be launched. Platforms must be moved from lower to higher alert states for launching, e.g.,
moved from Ready 15 to Ready 5.

8.3.2 Cf.panels-create

This package creates the Console-force PANELWINs, including:

" The Symbol PANEL_WIN which contains items for viewing the tactical-situation
screen, zooming in or out, moving platforms, erasing platforms. It also includes the
JTIDS deployment functions: network definition, circuit definition, and relay
specification.

" The Task-Forces PANEL WIN which contains an icon for each Blue task force and the
Red force hammer-and-sickle icon.

" The Simulation PANEL WIN, which is displayed flush to the right side of the computer
screen during BATMAN, and includes the simulation clock, NTDS (Navy Tactical
Data System) icons for making specified radar and sonar coverage of Blue force visible,
and the icons for displaying the status windows of Blue air, surface, or subsurface
platforms.

" Sibling Launch PANEL WINs, one for each Blue task force, containing an icon for each
group platform in the task force and an icon that returns to the Task-Forces

- 49 -

BATMAN & ROBIN Software Design I

PANEL-WIN. i
Sub Launch PANEL WINs, one for each task force, containing an icon for each sub
platform in the task force, an alert icon, a chainsaw icon, a CAP station icon, and an I
icon that returns to the Task-Forces PANEL WIN.

" Alert PANEL WINs, one for each task force, containing a Ready 5, 15, and 30 icon for
each sub platform in the task force. For more information, see Section 8.3.1, Alert.

While deploying tactical assets, all of the above but the Simulation PANELWIN are accessible.
During the simulation, all of the above but the Symbol PANEL_WIN, the Task-Forces
PANEL WIN, and the sibling Launch PANEL WINs are accessible. Therefore, the sub Launch
PANELWINs and the alert PANELWINs are used in both deploying assets and managing the
battle.

8.3.3 Cf panels-notify

This package contains the Notify routines for the Console-force PANEL WINs created by the
cf panels-create package (see Section 8.3.2).

8.3.4 Findsymbols i
This package contains utilities for locating objects in the maincanvas given a mouse-selected
coordinate. They are used for move operations, erase operations, and for the range and bearing I
feature (Section 8.12.5, Range and bearing). These utilities are used during the deployment and
battle-managemeni phases of the simulation.

8.3.5 Jtids network i
This package contains functions for defining a network of JTIDS fighter-to-fighter, air control,
and/or surveillance circuits. This feature is accessed through the JTIDS button placed at the top of I
the Symbol PANEL-WIN.

Defining the JTIDS network involves specifying the following: I
* Network Capacity: percentage of network's capacity allocated to each of the three

circuit types. The human-computer interface for this is a Multiple-Partition Slider item
(see Mps).

* Circuits: clusters or sets of JTIDS-capable platforms, i.e., fighter-to-fighter, air control,
or surveillance. There can be an unlimited number of circuits. Definition of a circuit is
controlled by the routine circuit_inputhandler, which allows the user to select the
platforms that are members of the circuit currently being defined.

Relays: platforms within a particular circuit that can relay JTIDS messages or link data
to other platforms in the circuit. As a default, all JTIDS-capable platforms are relays.
This feature, implemented by the routine relay-input handler, allows the user to turn
a specific platform's relay on or off by selecting it with the mouse on the battle-
management display.

For more information, see Section 9.2, JTIDS. I
-50- I

I

BATMAN & ROBIN Software Design

8.3.6 Launch panel

This package contains routines to create, manipulate, and destroy sub platform launch
PANELWIN attached to mother platforms.

8.3.7 Symbolmanager

This package manages the placement, movement, and removal of objects in the maincanvas (where
the maps are drawn) during deployment. These objects include Console-force platform, CAP
station, and chainsaw icons. The functions in this package are generally called when a mouse
selection is made in the maincanvas, e.g., specifying the location to deploy an F-14. These calls
have to occur within the right context. For example, the F- 14 choice in the sub launch PANELWIN
is selected prior to deploying it in the maincanvas.

8.4 BATMAN Simulation Packages

The packages described in this section control and perform the BATMAN simulation.

8.4.1 Coverage

This package contains radar, sonar, and jam coverage drawing functions used during the simulation
as well as functions to manipulate BATMAN & ROBIN's colormap. Manipulating the colormap
is particuiariy usetui when switching between sonar and radar coverage.

8.4.2 Detect

This package contains functions that compute positional relationships between platforms and,
using the detection-units aboard each of them, determines which platforms a particular sensor can
detect. Currently, the Willard-Lueker space-tree detection-model is used to perform these
calculations (see Appendix A, AN O(D+(N log2 N)) ALGORITHM FOR RANGE/BEARING

RESTRICTED SEARCH IN TWO DIMENSIONS). BATMAN's radar model assumes that a
platform being picked-up is within the altitude, azimuth, range, and line-of-sight of the detecting
unit, and has a sufficiently large cross section for this sensor.

8.4.3 Engine

This package contains the data structures and code that drives the BATMAN simulation. The
controlling function is simulation-engine, which operates from a circular list of ENGINENODEs,
as illustrated in Figure 6.

Currently, ENGINENODEs are grouped into the following types: clock, map_copy, pre-detect,
reddetectbuild, reddetectplat, redaswdetect, redpost-detect, redupdate_plat,
green detectbuild, greendetect_plat, green_ aswdetect, green post-detect,
greenupdateplat, bluedetectbuild, bluedetect.lat, blue asw detect, blue postdetect,
blue update_plat, redlaunch plat, greenlaunchplat, go-draw, draw-plat, updateesm,
displaychanges, and update_misc. Figure 6 abstracts these into nine stages: (a) clock, (b) map-
copy, (c) red detect and update, (d) green detect and update, (e) blue detect and update, (f) red and
green launch, (g) draw platforms, (h) update ESM, and (i) update misc. The list is maintained so
that all nodes of the same engine-node-type are contiguous.

-51-

BATMAN & ROBIN Software Design I
!
1

I I

.. .!iclok u atE "red detect green detect
mise mpo • patf and update l and update

...............................

ENGINE_NODE
List

updatte drwrd and blue detect
misc upat .S platforms green launch and update

Figure 6. ENGIN4E NODE List

Before starting the battle simulation, the ENGINENODE list is initialized, and the "current- i
engine-node" is set to map-copy. The initial state of the list is approximate to the illustration in
Figure 6. The simulation is started by posing simulation engine as a loop function (see Sections
8.1.6, Main, and 8.1.7, Misc). Then, simulation_engine refers to its circular list of
ENGINENODEs to determine which functions it should call. This continues until the simulation
is terminated. i
Each call to simulationengine is only allowed to run for the amount of time specified by the
msecengineupdateinterval parameter of the Parameter Database (see Section 11.9, System-
Configuration Parameters). Imposing this time limit will periodically return control to the
system so that it can process user input. Therefore, it may take several calls of simulation engine
before one cycle of the ENGINENODE list is completed. Furthermore, the more platforms
involved in the scenario, the longer each cycle will take to complete.

The most powerful feature of the engine is that the ENGINENODE list it operates from can
change during the simulation, dramatically increasing the engine's flexibility. The I
ENGINENODE list changes depending on what the battle manager does. For example, if the

-52- ii

BATMAN & ROBIN Software Design

battle manager requests that the outer-air battle not be visible, this is handled by removing the
ENGINE NODE that draws air platforms. If the battle manager requests for the outer-air to
become visible again, the node is simply added back to the list.

8.4.4 Jtids.conn

This package contains functions to coordinate JTIDS connectivity features available during the
battle-management. With these features, the user can view a depiction of probable contour or point-
to-point connectivity for JTIDS-capable platforms. They are accessed through the JTIDS
simulation panel which is placed flush along the left side of the battle-management screen. This
package includes functions to (a) create the JTIDS simulation panel, (b) handle notifier events for
each feature in the panel, and (c) process mouse input in the maincanvas during the JTIDS mode.
For more information, refer to Section 9.2, JTIDS.

8.4.5 Jtids hooks

For information about this package, see Section 9.2, JTIDS.

8.4.6 Plat comm

This package communicates detections among all the members of a force, and assigns detections
to each platform in a force for use by the smart-platforms engine (see Section 8.5, Smart-Platform
Packages).

8.4.7 Plat detect funcs

These functions use a platform's detection unit, e.g., radar or sonar, to locate hostile platforms, and
simulate firing weapons at the detected raiders. Detecting threat platforms is accomplished by the
detectplats function from the detect package described above, and coordinated by routines in this
package. Firing weapons at the detected platforms is also initiated by routines in this package.

8.4.8 Plat draw funcs

This package contains functions to draw platforms, CAP stations, chainsaws, radar and sonar
coverage, chaff corridors, jamming, antiship missiles, firing lines, and explosions in the
maincanvas during the simulation. This package can be viewed as a toolbox of drawing functions
that update the user's view of the battle. Different drawing functions may be called depending on
what happens during the battle simulation. For example, an explosion is drawn when a platform is
destroyed. Or, radar coverage for air platforms becomes visible if the user requests it.

8.4.9 Plat list funcs

This package contains routines to update a number of lists maintained during the simulation, e.g.,
a list of destroyed Blue platforms.

8.4.10 Plat update funcs

This package contains routines that control and update the movement and status of all Blue, Red,
and Green platforms during the simulation. This includes routines called by user input, e.g., request
to land an air platform on a carrier, and by the simulation engine, e.g., update a platform's
movement on a chainsaw.

- 53 -

BATMAN & ROBIN Software Design I
8.4.11 Status 3
This package contains functions to construct and display individual, group, and sub platform status
windows. The STATUSWIN structure, defined in this package, is used to implement these three
types of status windows. A STATUSWIN is composed primarily of a Sun Pixrect (Sun Pixrect
Reference Manual, 1990), but contains additional information to provide more functionality for
BATMAN & ROBIN. I
One STATUS_WIN, declared in the CONSOLE FORCE structure (see Section 7.0, BATMAN &
ROBIN Global Data Structures), is used to display the status of an individual platform. Only a
single platform's status can be displayed at any one time. The individual status window is currently
displayed in the lower left corner of the battle display.

Group platform status windows provide the status of all mother platforms in the designated task 3
force. Sub platform status windows provide the status of all sub platforms in the designated task
force. A STATUSWIN structure is declared in each STATUSREC from the CONSOLEFORCE
structure to hold these windows. The group and sub platform status windows are currently
displayed in the upper left corner of the battle screen.

The display of these three status windows is mutually exclusive, i.e., only one of t' -n can be 5
displayed at a time. When the user requests to view one of these status windows, an "update-misc"
ENGINENODE is added to the ENGINENODE list to display the selected status window (see
Section 8.4.3, Engine). When the user no longer chooses to view the status window, the I
ENGINENODE is removed from the list.

Troughout BATMAN, Blue platform status is updated as follows: Each PLATFORM data
structure has a pointer to the force's individual STATUSWIN and the group or sub platform
STATUS WIN to which it belongs. Then, during the battle, each active platform writes its updated
status into both the individual STATUSWIN and the appropriate "multiple-platform"
STATUSWIN (either group or sub). The updates are only visible if a status window is displayed.

8.5 Smart-Platforms Packages

The smart-platforms packages implement artificially-intelligent platform behavior, as described in
Section 3.0, Artificially Intelligent or Smart Platform Behavior. The design can be most easily
understood by beginning with the data structures. There are four main tables, all of which reside in I
sptables. They are:

SPRULETABLE: defines all the transition rules in terms of condition functions (from I
sp cond-funcs), or logical operations upon other rules.

SPSTATETABLE: defines all the states in terms of action functions (from
spactionfuncs), default speed and area of interest (for detections).

SPFSATABLE: defines all ihe [SAs in terms of states and rules.

SPMISSIONTABLE: associates all missions with FSAs and enemy types.

In every cycle of BATMAN's simulation engine (see Section 8.4.3, Engine), sp_engine is called
for all active platforms from "detect and update" stages of the simulation. spenginc checks all I

-54- I
I

BATMAN & ROBIN Software Design

transitions from the current state to see if any can be traversed. Transitions are checked by
recursively evaluating the rule which is associated with them. State changes are made until the
platform enters a state with no transitions that evaluate to true. If a state change is made, spengine
is responsible for updating not only the current platform, but also any old or new target platforms.

Some rules need to be evaluated for the platform's entire detection list. This is noted in the rule by
the detect list eval field. In this case, the rule is tested for all detections until it evaluates to true.
The target.plat field in the platform record is used to store the current detection.

User input is handled by change.platdirection in platupdatejfuncs as was previously the case,
but now this function is responsible for instructing spengine to change state when requested by
the user. This is done with force newstate in the spengine package.

Another noteworthy data structure is the available tankers list which is maintained by sp utils.
This list is used as a convenient way to look for nearby tankers when a fighter needs to refuel. It is
important that this list be updated every time a tanker is launched or lands.

Distributing detections among members of a force is handled by espdetect.plat. espdetect.plat
uses a Willard-Lueker space tree to attach a sorted list of detections that lie within a platform's area
of interest to each platform in the force. This list is sorted according to hostile action, and the
detection's kill priority and distance from the platform. This list is sorted so that when sp.engine
picks the first target from the list for which a transition evaluates true, it will be the most
appropriate available target.

Because the rules check for the number of attackers before a platform can select a target, 'he order
in which sp_.engine evaluates the platforms in a force determines how targets will be assigned. To
make sure that platforms choose appropriate targets, espdetect.plat sorts the moving.plats list for
the force so that platforms that are closest to their most likely potential target are allowed to choose
a target first.

8.5.1 Spaction-funcs

This package contains the action functions which correspond to platform states. They control
platform movement and weapons firing.

8.5.2 Spbrowser

The smart platforms browser allows the user to examine the FSA diagrams, state descriptions, and
transition rules that control artificially intelligent behavior. This information is available during
ROBIN and during the simulation in BATMAN and accessed via the "Missions" button. The user
traverses this information by first choosing the force (Red, Blue, or Green) of interest
(browserjorcepanel win) and then choosing a mission (browsermissions.panel win). The
browserj/sa.panel_win displays the FSA diagram for the mission. The user examines specific rule
and state descriptions by clicking on them in the FSA diagram. The selected information is
retrieved from a text file and displayed in a SunView text window (desc window).

The FSA diagrams are Sun raster files in /nprdc/wargame/pics/fsas, and the state and rule
descriptions are in text files in /nprdc/wargame/data. There is a separate file for each state
description with an extension of .state and the rules are all contained in the file rules.txt.

-55 -

BATMAN & ROBIN Software Design I

8.5.3 Sp.cond-funcs I
This package contains the condition functions which are used to evaluate the rules of the platform
state diagrams. They check levels of detection, status and attributes of platforms, warnings and I
weapons status, and user overrides.

8.5.4 Spengine

This package contains the smart-platforms engine. This includes functions to evaluate rules,
traverse transitions, and changes to new states upon user input.

8.5.5 Sptables

This package contains the tables which define the smart-platform rules, states, FSAs, and missions.
The tables are all constant, i.e., they are set automatically upon initialization and never modified.

8.5.6 Sp.utils

This package contains smart-platforms utilities. These include routines to manage: nitmory
allocation, an available tankers list, destination location for smart-platforms action functions,
smart-platforms platform attributes, display routines, and special detection routines.

8.6 EW/ESM Packages

The purpose of this enhancement to BATMAN & ROBIN is to permit platforms into, or out of,
EMCON (emissions control), and to add ESM as a means of detection. The former was
accomplished by allowing the scenario creator to select Red or Green platform paths and indicate
where radar will be on, and allowing the BATMAN user to turn radar on or off for task forces and/
or individual Blue platforms. The latter was achieved in the following manner. The modeling of
radar was augmented to permit platforms with ESM capabilities to detect the individual radars on
emitting platforms. These passive detections are displayed on the screen, and used in the smart-
platforms decision process. A simulated pop-up status board was added which displays both
current and past ESM information. Also added was the option to view past ESM contacts in a
depicted warfare theater.

The following assumptions were made during the design of the EW/ESM simulation or model:

" Passive ESM- or counter-detection distances vary as a function of emitter radar type, 3
and range from 1.5 nm to 3.5 nm.

• The emitting and ESM-detecting platforms must be within line-of-sight of one another. 3
This is usually less than the counter-detection range.

• The passively detecting ESM-platform must (a) be within the radar beam or coverage
of the emitting platform, and (b) have the capability to detect emitter bands.

* Blue-force platforms know the positions of all other Blue-force platforms, and do not
use ESM to passively detect one another. I

" ESM passively detects individual radar units emitting from other platforms.

* The location of an emitting radar can be determined only if two or more platforms

-56- 3
I

BATMAN & ROBIN Software Design

passively detect it.

" A platform can be identified as hostile by the radars it emits, if passively detected by
ESM.

* An ESM detection is never considered a positive identification of a specific platform
type. This requires visual identification.

* It is possible for hostile emitting platforms to "trick" or deceive ESM detection by
closely spacing themselves.

* The radar coverage display in BATMAN depicts the maximum possible painted

picture.

" If a platform is not under EMCON, all of its search radars will be emitting.

" Search and navigation radars are always pointed in the same direction as the platform's
heading, unless it is an omnidirectional sensor.

* All ESM detections -- other than "Don Kay," "Don-2," "Palm Frond", and Green air
radars -- are considered hostile.

" Entries are removed from the ESM-status board when they have traveled distances
specified by esmstatusremovedist as defined in the Parameter database.

" Entries are removed from the past ESM-contacts display when they have traveled
distances specified by esmlostcontacts removedist as defined in the Parameter
database.

It was also assumed that Red platforms can be identified when the following radars are passively
detected on them:

Udaloy: Top Mesh or Strut Pair
Sovremeny: Top Plate
Kashin: Head Net C and Big Net
Kirov: Top Steer and Big Net
Kiev: Top Pair and Top Sail or Top Sail and Top Steer
Mig-23: High Lark
Mig-25: Fox Fire
Mig-29: NO-93
Mig-31: Foxhound
Su-15: Twin Scan
Mig-19: Scan Odd
Bear: Big Bulge
Mainstay: Suawcs
Badger: Puff Ball
Blackjack: Blackjack
Blinder: Down Beat and Short Horn

-57-

BATMAN & ROBIN Software Design I
I

ESM detection information is left in the PLATFORM records until it has been processed by
esm display. esm display is the primary EW/ESM package, controlling the ESM status window
in addition to analyzing the detections for the map display.

8.6.1 Esm detect

This package contains the ESM detection functions, and functions to handle target-acquisition
radar.

8.6.2 Esm display I
This package contains the past ESM contacts notify routine, the initialization and clean-up of EW,
and the functions that process the ESM detection information and control the ESM display. The 3
display includes ESM detect lines, target acquisition radar, and past ESM contacts. The display
routines are responsible for avoiding overlapping detection labels and past contacts, minimizing
the detection lines shown, making cross detections briefly appear as single detections, and
displaying briefly radar names over recently identified platforms.

8.6.3 Esm status 3
This package contains the functions that implement the ESM contacts status window. This includes
the notify routine and engine node.

8.7 ASW Packages

BATMAN & ROBIN's ASW interfaces contain the following features:

" Loading sonobuoys and laying them in specific patterns from SH-2, SH-3, SH-60, S-
3B, and P-3C ASW aircraft.

* Towed and hull-mounted passive sonars for surface and subsurface platforms. I
" Dipping active sonar for SH-3s and SH-60s.

" Active and passive sonar-detection models.

" Range determination by any two or more cross-bearings between passive sonar-
detection lines.

* Launch and recovery of ASW helicopters from Blue-force surface platforms.

The following sections describe the software packages that implement the human-computer
interfaces for incorporating ASW capabilities in BATMAN & ROBIN.

8.7.1 Asw.pattern generator

This package contains functions that generate a list of latitude-longitude coordinates describing
how an ASW aircraft should fly while laying specific sonobuoy patterns. To calculate the I
coordinates, createasw drop-list is called with the name of a sonobuoy pattern, a series of mouse
clicks that indicate the pattern's location and orientation, and the number of sonobuoys to be laid.
The number of mouse clicks required to define the pattern depends on the pattern configuration or

- 58- 3
I

BATMAN & ROBIN Software Design

type, and will be either two, three, or variable. The spacing between sonobuoys also depends on
the pattern type, and will either be 1.5 MDR (median-detection range), 2/3 or 1 CZ (convergence
zone), or, in the case of the Freelance pattern, exactly as the user specifies. Table 3 lists the
available sonobuoy patterns and the ASW aircraft that can lay each pattern.

The Chevron, Circle, and Semi-Circle patterns are treated differently than the others in that their
size will be calculated automatically to accommodate the number of sonobuoys the user wishes to
drop. For example, dropping ten sonobuoys along a Circle pattern using MDR spacing will yield a
larger circle than if five sonobuoys were dropped.

Table 3

Available Sonobuoy Patterns

Pattern ASW Platforms

Barrier SH-2F, SH-3F, SH-60B
Chevron SH-2F, SH-3F, SH-60B
Circle SH-2F, SH-3F, SH-60B
Semi-Circle SH-2F, SH-3F, SH-60B
Freelance SH-2F, SH-3F, SH-60B
Dipping Sonar SH-3F, SH-60B
5-6-5 MDR S-3B, P-3C
5-6-5 CZ S-3B, P-3C
Brushtac S-3B, P-3C
Barrier S-3B, P-3C
Sawtooth Barrier S-3B, P-3C
4x4 P-3C

8.7.2 Asw sonar

This package contains functions that implement simulated ASW, and can be be divided into two
groups:

1. functions that support the laying of sonobuoy patterns, and

2. functions that interface with the active and passive sonar-detection models.

The human-computer interface for laying sonobuoy patterns allows users to drop specified or
selected patterns from ASW air platforms. The user specifies the number, longevity, depth, radio
frequency, pattern, and orientation of the sonobuovs. The aswpattern generator package (see
Section 8.7.1) is used to compute the path vectors that an air platform flies when laying a particular

- 59-

BATMAN & ROBIN Software Design I
pattern. I
The remaining functions provide links with the active and passive sonar-detection models (see
Section 9.3, Anti-Submarine Warfare). To date, the following active or passive sonars are I
available: hull-mounted, towed arrays or tails, and dipping.

8.7.3 Lambda-sigma 3
For information about this package, see Section 9.3, Anti-Submarine Warfare.

8.8 Performance Measures Packages I
The packages in this group compute and display objective, automatically recorded, multivariate
performance measures (sometimes referred to as statistics) for the most recent gaming of a specific
BATMAN scenario. Performance measures can be viewed at the console, sent to a printer, or
written to a file. The header file stats rees.h declares four data structures used by the performance
measures packages. Their names and purposes are listed in Table 4. 1

Table 4 3
Performance Measures Data Structures

Data Structure Purpose I
U

STATSMAINAGERWIN Performance Measures Manager PANEL WIN
STATISTICSWIN Performance Measures PANELWIN
STATS_FIELDS Hold data collected during simulation
STATS_HEAD Ties above three structures together U

STATSMANAGERWIN provides a PANEL_WIN that allows the user to select the types of 3
platforms (air, surface, or subsurface) and point of view (Red or Blue) of the performance measures
display. STATISTICSWIN provides a PANEL WIN to hold the performance measures when they
are displayed. One of its Panel Items is a large Pixrect where the performance measures are written.
STATSFIELDS holds the data collected during the simulated battle that will be used to compute
the performance measures. STATSHEAD brings the above three structures together in one place,
with some other information global to the performance measures packages.

8.8.1 Stats

This package contains functions that initialize the STATSHEAD structure, create the i
PANELWINs in the STATS_MANAGERWIN and STATISTICSWIN structures, and display or
print performance measures. g

-60- U
I

BATMAN & ROBIN Software Design

8.8.2 Stats-compute-funcs

The functions in this package use the data collected during the simulated battle to compute the
performance measures. The STATS_FIELDS structure holds the collected data. These functions
can be used to calculate the performance measures from either the Red or Blue Force's point of
view. In general, one function is dedicated to calculating each performance measure.

8.8.3 Stats notify

This package contains the Notify functions for the PANELWINs from the
STATS MANAGERWIN and STATISTICSWIN structures.

8.8.4 Statsjupdate-funcs

This package contains functions that the simulation uses to send battle-related data to the
STATS_FIELDS structure, thereby recording a history of the battle as it occurs. Many of the
functions from the simulation engine make periodic calls to these functions.

8.8.5 Stats verify

This package contains functions that write performance measures to a file in the user's directory.
For more information, see Section 14.0, User Database.

8.9 ROBIN Packages

The packages in this group implement ROBIN, the system's rapid scenario generator. They are
responsible for providing a friendly interface to creating, editing, and viewing Red-force raids for
different warfare theaters as well as assigning tactical assets to Blue task forces and defining the
Green or neutral-force movements.

Figure 7 provides a map between the features provided by ROBIN and the primary package
providing that feature. The header file robinglobals.h contains global variables used by all
ROBIN packages.

8.9.1 Robinassign

This package provides the routines for assigning specified sets of scenarios to particular groups of
students or system users. That is, scenarios or test items can be clustered into sets or tests, and users
or students are placed into groups or classes. Within a set, scenarios can be administered either
randomly or in a specified order to a group of BATMAN users.

8.9.2 Robin blue

This package contains the Panel creation and notify routines that allow the user to specify the Blue
force's tactical assets, and the routines that build and maintain the Blue-force template (see Figure
4 in Section 7.0, BATMAN & ROBIN Global Data Structures). The user can define up to three
task forces designated TFA, TFB, and TFC. For each task force, the user indicates the air, surface,
and subsurface platforms, weapons, and sonobuoys for the scenario. In BATMAN, these will
become the Blue-force tactical assets that the battle manager has to allocate, deploy, and control.
Robin-blue also allows the user to change important database parameters of blue-force platforms
(see Database and Graphical-Frontend Packages below).

-61 -

BATMAN & ROBIN Software Design

[ROZBI

(robin
manw)

rowseEdito P lI
And dassI

as (rbin robi
edit)

9 -$ ssigI
Specfy R~y B

Platforms Charlx ie ouy

am~mnI

Figure 7. ROBIN Features to Package MapI

-62-

BATMAN & ROBIN Software Design

8.9.3 Robin-edit

This package provides controlling routines for the scenario editor. It creates the editor
PANELWIN and regulates transitioning to specific edit features such as placing the defended
point (V/L), specifying the Red-force raid, or allocating Blue-force assets. Only one scenario may
be edited at a time.

8.9.4 Robin init

This package contains functions that initialize ROBIN's global variables, control the creation of
ROBIN's windows and panels prior to a session, and remove ROBIN's windows and panels after
a session.

8.9.5 Robin io

This package contains functions for writing and reading scenarios to and from the Scenario
Database. For more information on the Scenario Database, refer to Part HI of this document.

8.9.6 Robin loadout

This package contains routines for loading Red-force bombers with anti-ship missiles as well as
communications-jamming and radar-jamming pods. For more information on jamming, refer to
Section 9.2, JTIDS.

When the user selects a bomber to specify its flight path or track, the Red-bomber loadout screen
is displayed. This screen includes:

" A large icon of the bomber and its designation.

* Icons for possible weapons that this bomber can carry.

" A communications-jamming pod icon.

" A radar-jamming pod icon.

" An icon for transitioning from loadout to flight paths.

Wcapon icons allow the user to loadout weapons on the selected bomber, the same way that
weapons are loaded onto Blue platforms (see Section 8.2.3, Loadout).

The communications-jamming and radar-jamming pod icons are both toggle items. Initially, these
pods are displayed unloaded. When selected, each is "loaded" onto the bomber (indicated by
reverse video), and its associated jamming attributes are displayed. If selected again, the pod is
unloaded, and the jamming attributes are cleared from the screen. Jamming-pod attributes are
defaulted if they are not specifically set.

8.9.7 Robin_manage

This package controls ROBIN's administrative features including listing scenarios, saving
scenarios to disk, deleting scenarios, copying scenarios, and transitioning to the scenario editor. It
also contains functions that create the manager PANELWIN.

- 63 -

BATMAN & ROBIN Software Design i

8.9.8 Robin map I
This package provides routines that interface with the World Database II maps (see Section 9.1,
World Database H). Specific features provided by this package include displaying warfare i
theaters, interacting with the miniature world map that appears in the upper left comer of the
ROBIN manager, drawing the scale that borders the warfare theaters, and placing and drawing V/
L within a warfare theater.

8.9.9 Robinpath

This package contains the Panel creation and notify routines that permit the user to specify the Red-
force attack and the Green-force movement paths or tracks. These routines are generic so that they
can handle either Red or Green forces, i.e., the force serves as a parameter to many of these
routines. In fact, these routines could implement other hypothetical forces, e.g., Yellow. The data i
structures PF._INFO and PFDATA store path-force specific information. This package is tightly
coupled with the robin-vectors package. 5
8.9.10 Robin vectors

This package contains routines for creating and maintaining the path-force "forest" data structure
(see Figure 5 in Section 7.0, BATMAN & ROBIN Global Data Structures). This package also
contains routines for placing Red- and Green force tracks including laying a new track, extending
an existing track, erasing defined tracks, hiding tracks from view, turning radar on or off, laying
chaff, and/or jamming on tracks. This package is tightly coupled with the robin-Path package.

8.9.11 Robinview

This package provides routines that will preview the Red-force raid showing how these hostile
platforms will maneuver during BATMAN, where their radars are on, and where they will lay chaff
corridors or jam communications. Similar to BATMAN's simulation engine, the routine
set_loop junc is used to trigger the ROBIN viewer (see Sections 8.1.6, Main, and 8.1.7, Misc).

8.10 Database and Graphical-Frontend Packages 3
The packages in this group interface to the Parameter Database and implement the Graphical
Frontend (GFED) to the Database. The GFED permits important platform parameters to be
adjusted on a scenario-by-scenario basis. For Blue-force platforms, the GFED is accessed in
ROBIN during Blue task-force specification for a specific scenario. When a parameter change is
made, it is applied to every platform of that task-force. For Red- and Green-force platforms, the
GFED is accessed in ROBIN during path specification. When a parameter change is made, it is i
applied to every platform in the path for that specific scenario.

8.10.1 Database 3
This package contains functions for retrieving values from BATMAN & ROBIN's Parameter
Database. The design of this package is a hybrid ndbm relational database model (see Section 11.0,
Parameter Database).

The function init database reads the Parameter Database into a memory-resident hash table (see
Section 8.11.6, Iash). d.get i retrieves a parameter with an integer value from the Parameter
Database hash table. d..Set_s, vgets, and dgetdata all retrieve parameters with character string

-64-

I

BATMAN & ROBIN Software Design

values, traverse database searches the Parameter Database hash table for a specified key, and
executes a function on all matching elements.

8.10.2 Param-attribute-manager

This packages handles all the properties specific to individual parameter types, such as their names,
location in the PLATFORM record, and data type.

8.10.3 Param data manager

This package contains routines to manipulate the data structures used by the GFED to modify
database parameters. It also contains routines for reading and writing to the scenario database (i.e.,
blue.n and path.n), as well routines to access the parameter database files.

8.10.4 Param windows

This package contains all the window creation, deletion, and notify routines for the GFED.
init.parameters.pane! initializes GFED's panel which include a centered item to display the
platform's icon. showparameters.panel invokes the GFED by displaying GFED's panel with the
specified platform icon and a list of changeable parameters for the platform.

8.11 Utility Packages

The packages in this group provide miscellaneous utilities used throughout BATMAN & ROBIN.

8.11.1 Bases andports

This package implements Red- and Green- force bases and ports. Bases and ports are treated
differently in ROBIN than they are in BATMAN, because paths are treated differently in ROBIN
than they are in BATMAN (see Section 7.0, BATMAN & ROBIN Global Data Structures).

In ROBIN, PATHNODEs are used to define Red- and Green-force paths. Therefore, bases and
ports threads the PATHNODEs to determine which paths initiate from each base or port.

BATMAN does not use PATHNODEs to define Red- and Green-force paths. Therefore, since
BATMAN only needs to know what resources originate from any base or port, a list of
PLAT PAIRs is used for BATMAN.

8.11.2 Canvas win

This package provides routines for creating and manipulating CANVASWINs. A CANVASWIN
is based upon a SunView Canvas, but contains additional information to provide more
functionality. A powerful feature of this package is that it provides a mechanism whereby a Canvas
can contain pseudo Panel-button items.

8.11.3 Chaff

This package contains functions for drawing and updating chaff depictions during the simulation.
Chaff is implemented as a GRAPHICORGANISM (see Section 8.11.5, Graphicorganism) that
develops or expands as the simulation proceeds.

Each of the routines in this package manipulates the chaff GRAPHICORGANISM in some

- 65 -

BATMAN & ROBIN Software Design i

manner: build chaff organism creates a chaff GRAPHICORGANISM; update-chaff expands the i
chaff corridor; go chaff-draw partially or totally redraws the chaff; gochaff reset resets the chaff
in preparation for a total redraw; and go chaff free deletes the chaff GRAPHICORGANISM.

8.11.4 Colors

This package provides functions that initialize and maintain BATMAN & ROBIN's colormap 3
which resides on disk in the file specified by the colormap parameter of the Parameter Database
(see Section 11.9, System-Configuration Parameters). The SunView routines pr.putcolormap
and pw_putcolormap use this colormap to set-up its color palette. 3
8.11.5 Graphic-organism

GRAPHICORGANISMs are graphical entities that develop or expand throughout the simulation, 3
finally reach. '-g a predetermined final appearance, e.g., chaff (see Section 8.11.3, Chaff). They can
be drawn incrementally as they evolve, or redrawn completely if necessary.

_ I
The programmer defines a GRAPHICORGANISM with the routine go_add, and specifies: (a) a
draw function, (b) a free function, (c) a reset function, and (d) a generic data pointer passed to each
of these three functions. 3
A list of all defined GRAPHICORGANISMs is kept, and the exported routines godraw_all,
goresetall, and freegolist are used, respectively, to draw, reset, and free the
GRAPHICORGANISMs. I
8.11.6 Hash

This package contains basic hash table functions. Each hash table is implemented as a collection I
of (key, data) pairs, such that the data are retrieved via the key. Among other things, this package
is used to store a memory-resident copy of the Parameter Database. I
8.11.7 List_manager

This package provides standardized data structures and functions for manipulating doubly-linked
lists. Each LISTNODE contains previous and next pointers as well as a pointer to some generic
data.

8.11.8 Memory I
This package contains functions for handling memory and pixrect allocation. It also contains
routines to track and debug memory-allocation bugs. 3
8.12 Messages

This package contains routines to create and edit messages in ROBIN, and to display and read 3
messages in the ROBIN viewer and BATMAN.

8.12.1 Mps

This package provides the routines and data structures to create and manipulate a Multiple-
Partition Slider (MIPS). Based upon a Sun-slider item (SunView Programmer's Guide, 1990), an
MPS contains N partitions in one slider. The sum of all partitions in an MPS equals 100 percent.

-66- 3
I

BATMAN & ROBIN Software Design

An MPS item is created and used like any Sun panel item, e.g., a slider or button. Sun-message
items are used to implement the two portions of an MPS: (a) the picture area holds the graphical
representation of the partition, and (b) the label area, below the picture area, displays the labels and
numerical values of the partitions.

8.12.2 Numberpad

This package provides a pop-up number pad that is used for inputting integers into BATMAN &
ROBIN, e.g., specifying the number of Phoenix missiles to load onto each F-14. The number pau
is implemented with a PANELWIN where each digit (0 - 9), the backspace key, the enter key, and
the display area are Panel items. If the enter key is selected and the number in the display area is
within a specified range, the number is "accepted" and the number pad is automatically cleared
from the screen.

8.12.3 Panel win

This package provides routines for creating and manipulating PANEL WINs. A PANELWIN is an
object created specifically for BATMAN & ROBIN. It is based on a SunView Panel, but contains
additional information to provide more functionality. A nowerful feature of this package is that it
can create a SunView Panel-choice item with a variable number of options where each is labeled
with an icon. For example, this feature is used during weapons loadout. The number of different
types of weapons that can be loaded out on an aircraft varies depending on the specific platform.
The panel win package can be used to handle these situations without requiring a different Panel-
choice item for each air platform.

8.12.4 Popuppanel

This package provides a mechanism for displaying "pop-up" (overlaid) messages, which may
contain button and/or a password-request items. It can be used to display general or error messages
with a continuation button, "pseudo menus" where each option is a button, or a simple password
request.

One private PANELWIN is used to store and display the popup messages. Upon each request to
display a message, the local PANELWIN is cleared and then set-up with the specified attributes
of the message. The "varargs" parameter passing mechanism is used to specify a varying attribute
list that defines the appearance of the message panel. Defaults are used when required attributes
are not specified.

8.12.5 Rangeand bearing

This package contains functions that implement the range-and-bearing feature available during
both deployment and the simulation. When in range-and-bearing mode, the user may obtain the
range-and-bearing between any two points on the map display or screen. If the user clicks near a
platform or sonobuoy, the location of the object is used for calculating the range and bearing rather
than the location of the click. The range-and-bearing information appears in a box near the
midpoint of the line segment selected. This information remains on the screen until the user selects
another two points or until the user exits range-and-bearing mode. When range-and-bearing is
selected during the simulation, it pauses the simulation.

The range-and-bearing feature works by replacing the current maincanvas input handler with

- 67 -

BATMAN & ROBIN Software Design U
rbinputhandler, which controls the selection of the two endpoints and updates the rubberband I
line. The user can exit range-and-bearing by clicking on the range-and-bearing icon or by selecting
one of the other active icons on the screen. The function clear rangebearing uses the values of
local static variables to restore the previous state of the system. This restoration includes resetting
the maincanvas input handler to its previous value, removing any range-and-bearing information
from the screen, and unpausing the simulation if necessary. 3
8.12.6 Seen-display

This package creates a Panel that displays a graphical summary of a scenario including the warfare 3
area, scenario number, and the Red and Blue-force tactical assets. It is used in ROBIN by the
manager and in BATMAN by playback and the performance-measures packages.

8.12.7 Time item i

This packages creates and manipulates a standard time-item implemented as four buttons.
Selecting any of the buttons will bring up the number-pad. The caller specifies the time-item's
initial value, the number-pad's location, and the number-pad's enter function in the call to
create time item.

8.12.8 Udrop 3
This package contains user-defined raster operations (UD-ROPs). The only UD-ROP to date,
clearradar, clears the radar depiction from the display. This package is intended to contain
special-purpose raster operations that cann3t be performed by the standard PIX_* macros (Pixrect
Reference Manual, 1990).

8.12.9 Utilities

This package contains utility routines for trigonometric calculations, memory allocation, image
drawing, and several other miscellaneous functions. These functions are used throughout I
BATMAN & ROBIN.

8.12.10 Version 3
This package contains a string indentifying the current version of BATMAN & ROBIN. This is the
string that is displayed in the upper-left-hand-corner of BATMAN & ROBIN's frame. 3
8.12.11 Warningsandwpn status

This package contains the Blue- and Red-force warnings and weapons status code. It also contains
code to construct the Blue-force DEFCON-warning boxes displayed on the TACTSIT screen. U
8.12.12 Zoom

This package handles the zoom feature available in ROBIN while defining or editing a scenario
and in BATMAN while deploying or managing tactical assets. When activated, it provides a
special mouse cursor and input handler to inform the user that the zoom feature is engaged. When 3
a new range is selected, the mapdb package is called to reset and draw the new view (see Section
9.1, World Database 11).

-68- 3
I

BATMAN & ROBIN Software Design

9.0 Software Interfaces

This section describes BATMAN & ROBIN's current software interfaces for integrating external
computer models. These interfaces, or software hooks, provide a means for linking other models
with BATMAN & ROBIN. For specific details and caveats regarding model integration, refer to
Szction 5.3, Guidelines for Adding a Computer Model.

9.1 World Database II

The warfare theaters in BATMAN & ROBIN are based upon the World Database II maps that were
developed and provided by the Applied Physics Laboratory of Johns Hopkins University. This
document does not describe the map database or the software that controls it, only BATMAN &
ROBIN's interface to it.

The specifications of these maps are as follows:

" The maps are rendered by an ortholonal projection of the globe onto a plane tangent
from a specified latitude-longitude coordinate, and viewed from a specified range. For
a given scenario, the center point of the projection is Victor/Lima.

* The resolution of the views range from 16 to 2048 miles in diameter.

" Land masses are drawn with a polygon filling algorithm that draws the largest possible
polygon first, and then fills in the details by drawing smaller and smaller polygons.

" The maps can be drawn with or without country borders.

* The maps can be drawn with or without latitude-longitudt lines.

In interacting with the World Database II maps, BATMAN & ROBIN use the ,..,Vrdinate systems
described below and illustrated in Figure 8.

" The Global coordinate system is based on latitude and longitude. In ROBIN, all raid
information will be stored in this system as well as the center point (V/L) of the battle
area.

" The Map Plane is a Cartesian coordinate system tangent to the globe at the center point
of the battle area with Y axis parallel to the longitude line of the center point. The map
is an orthogonal projection from the globe to this plane. X and Y distances are in miles
from the center of the earth along a plane through the center, not along the surface. The
tangent point of this plane will not change during the simulation.

* The Simulation Plane is a Cartesian coordinate system with origin at the centtr of the
battle area. X and Y are in increments of. 1 miles. The distance in miles is linear on this
coordinate system, which is used for detection and cal-ilation of all platform
movements during the simulation. Platform locations will be store-] in this coordinate
systen. dur;:ig the simulation, and will be converted to the other systems when needed.

- 69 -

BATMAN & ROBIN Software Design

U
I
I

Display Monitor -
Map Canvas is

drawn to BATMAN &I
ROBIN's window

(0,0)

MAP CANVAS - I
Origin is in

upper left corner U
....... 1 U

MAP/SIMULATION
- I PLANE -

Origin is at

(0,0) Victor/Lima
I

II

U

GLOBAL- U
Victor/Lima is

center point
of battle

I
I

Figure 8. BATMAN & ROBIN Coordinate Systems U
- 70 -

I

BATMAN & ROBIN Software Design

The Map Canvas is the coordinate system of the maincanvas containing the visible
portion of the Map Plane. The center of this co'nrdinate system corrpnnds to an offset
from the origin of the Map Plane. This coordinate system is used to draw all objects on
the maincanvas, i.e., the battle area.

9.1.1 drawmaponpr

BATMAN & ROBIN interfaces to the World Database II maps through the drawmaponpr
routine in the mapdb package located at /nprdewargame/mapdb/mapdb.c. This routine draws
a map onto a Pixrect with the specified attributes. Its formal interface is as follows:

extern int drawmap onpr(lat, Ion, xoffset, y_offset, range, borders, latlon_lines,
land_color, seacolor, lake_color, border_color, latlon_color,
pr, starfield_pr, debug_on)

double lat, Ion; /* latitude-longitude coordinate of V/L */
double x_offset, y_offset; /* offset from V/L */
int range; /* range from V/L */
int borders; /* whether country borders should be drawn */
int latlon_lines; /* whether lat-lon lines should be drawn */
unsigned int land color; /* color of land */
unsigned int seacolor; /* coior of sea */
unsigned int lakecolor; /* color of lakes */
unsigned int border color; /* color of country borders */
unsigned int latloncolor; /* color of lat-lon lines */
Pixrect *pr; /* pixrect to draw the map onto */
Pixrect *starfield_pr; /* background of globe */
int debug_on; /* whether BATMAN & ROBIN is in debug mode */

Several other routines exported by mapdb convert locations between the coordinate systems
described above, e.g., mc to mp converts map-canvas coordinates to map-plane coordinates.
draw mapon.pr initializes data in mapdb so that these coordinate transformations are accurate.

9.2 JTIDS

This section describes BATMAN & ROBIN's software interfaces for JTIDS (Joint Tactical
Information Distribution System) computer models. There are three JTIDS interfaces:getjam radius,jtids~ptptconnectivity, and _Ctidcontour connectivity; and they all reside in the

package jtids hooks.

9.2.1 getjamradius

The purpose of getjam radius is to compute the jamming radius in miles for a bomber loaded with

-71 -

BATMAN & ROBIN Software Design i

the specified jamming pod. The integer returned is the jamming radius. Its formal interface is as i
follows: I

extern int getjamradius(plat, podtype, uhf, vhf, lx, x, k, ku, ant-pat) 3
char *plat; /* name of bomber */
nt podtype; /* 0 = comm-pod; 1 = radar-pod */

int uhf; /* pod's UHF percentage (0 - 100) */ i
int vhf; /* pod's VHF percentage (0 - 100) */
int 1x; /* pod's Lx percentage (0 - 100) */
nt x; /* pod's x percentage (0 - 100) I
int k; /* pod's k percentage (0 - 100) /
mt ku; /* pod's Ku percentage (0 - 100) */
int ant_pat; /* pod's antenna pattern (45, 90, 180, or 360) */ I

- I
Jamming pods are loaded on Red-force bombers when the scenario is created with ROBIN (see
Section 8.9.6, Robinloadout). The scenario creator also specifies where along the bomber's
flight path or track jamming should take place.

It is intended for this routine to be called in three places: (a) when communications and radar
jamming is assigned to a bomber's flight path (see Section 8.9.10, Robinvectors); (b) during the
ROBIN viewer (see Section 8.9.11, Robin-view); and (c) during the BATMAN simulation (see
Section 8.4.8, Plat draw.funcs). 3
9.2.2 jtids_pt_pt connectivity and jtids contour connectivity

These routines are called during the BATMAN simulation and their purposes are, respectively, to
compute point-to-point and probable contour connectivity for a specified JTIDS-capable platform.
They are called by the jtidsconn package described in Section 8.4.4.

The formal interface for jtids_pt_ptconnectivity is as follows: I
I

extern PLATFORM *jtids_pt_pt_connectivity(blue_plats, red_plats, selected_plat, npg)
PLATFORM *blueplats; /* list of all blue platforms */
PLATFORM *redplats; /* list of all red platforms */
PLATFORM *selected.plat; /* the plat selected by the operator */
NPG_TYPE npg; /* network participation group */ 3

I
- 72- 1

I

BATMAN & ROBIN Software Design

where:

typedef enum npgtypes

{FF CIRCIJIT, AC_CIRCUIT, SURV CIRCUIT, NPGTYPES} NPGTYPE;

jtids..pt.pt connectivity returns a list of PLATFORMs from the bluefplats list, identifying who
within the specified npg the selectedplat can communicate with. Note that a PLATFORM contains
its location on the Simulation Plane (see Section 9.1, World Database II).

The formal interface for jtids-contour-connectivity is as follows:

extern Pixrect *jtidscontour-connectivity(blue_plats, red_plats, selectedplat,
tangent_lat, tangentIon, map range, resolution)

PLATFORM *blueplats; /* list of all blue platforms */
PLATFORM *redplats; /* list of all red platforms */
PLATFORM *selected_plat; /* the plat selected by the operator */
double tangent_lat; /* latitude of map tangent point (V/L) */
double tangentIon; /* longitude of map tangent point (V/L) */
int maprange; /* current zoom level of the map */
int resolution; /* resolution of the contour in tenths of a miie */

The returned pixrect describes the probable contour connectivity for the selectedplat. The
connectivity determination is based on platform locations, antenna patterns, circuit and relay
definitions, and Red jamming. Bits, which are set in the pixrect, represent contours or areas where
the selected-plat can probably or likely communicate.

tangentlat, tangentIon, map range, and resolution are included in the software interface so that
transformations can be made between the Simulation Plane and the Global coordinate system (see
Section 9.1, World Database H). It is assumed that these parameters would be required in
rendering the contour pixrect.

9.3 Anti-Submarine Warfare

This section describes BATMAN & ROBIN's software interfaces for ASW sonar-detection
models. The sonar models currently used by BATMAN & ROBIN are the passive and active
versions of the sonar equations developed for BATMAN & ROBIN (Buoni, 1989).

THESE ARE DESCRIPTIVE, NOT PHYSICAL, SIMULATION MODELS THAT WERE
SELECTED TO BE COMPUTATIONALLY EFFICIENT IN ORDER TO MINIMIZE
BATMAN & ROBIN'S RESPONSE TIME. In addition to the assumptions mentioned in

73-

BATMAN & ROBIN Software Design i

Buoni's thesis (1989),, there are two other notable constraints: i
• The models operate in two-dimensional space. That is, platform and sensor depths are

not factored into the models. Likewise, the effect of depth on sound propagation is not
considered.

• The models do not consider frequency. BATMAN & ROBIN assume that all platforms
radiate sound in a frequency range detectable by all sensors. Likewise, the effect of
frequency on sound propagation is not considered.

The lambda-sigma package contains the functions that implement the active and passive sonar-
detection models. The sonar-detection process is conducted in two phases. The first phase uses the
Willard-Lueker traverse and_prox function (see Section 8.4.2, Detect) to single out those target 3
platforms that are within range of the detecting sonar.

The second phase calculates either the active or passive sonar equation for each of the candidate
target platforms to determine if they have been detected. The active and passive sonar equations
are as follows: l

Active:

SE = SL - (NL - DI) - 2TL + TS + X(t)I

Passive: 5
SE = SL - (NL - DI) - TL + X(t)

Where:

SE is Signal Excess, or that part of the signal which is audible above the background noise.

SL is Source Level, or the intensity of the signal source. For passive detection, this is the amount
of sound generated by the target platform and is a function of the platform's speed. For active
detection, this is the amount of sound generated by the active sonar.

NL is Noise Level, or the background noise from which the desired signal must be extracted. Thisis a combination of ambient noise in the ocean and self noise generated by the platform carrying
the sonar device. Self noise is also a function of the platform's speed.

DI is Directivity Index, or a measure of the sonar's ability to detect sound from all directions. U

TL is Transmission Loss, or the weakening of the sound as a function of distance from its source.

X(t) is a random term intended to account for the stochastic nature of the detection process. This I
term is calculated using a Lambda-Sigma Jump process (Buoni, 1989).

TS is Target Strength, or the ability of P target platform to reflect sound. Target Strength is only I

-74- 1
I

BATMAN & ROBIN Software Design

used in the active equation.

The differences between the two equations are that:

1. the active model takes into account Target Strength (S),

2. Transmission Loss (TL) is doubled in the active model since the sonar signal must
travel to the target and then back to the active sensor, and

3. Source Level is an attribute of the detector in the active equation, and an attribute of the
target platform in the passive equation.

A detection occurs when Signal Excess (SE) becomes greater than the detection unit's Detection
Threshold.

BATMAN & ROBIN's software interface to these sonar-detection models is through three
functions exported from lambda .sigma: init.random jump, randomjumptdine, and sonar.
initrandomijump and random jumptime control the generation of the X(t) term in the sonar
equations, and sonar is the interface to both the passive and active sonar equations.

9.3.1 initrandomjump

This function initializes the static variables overall.lambda and overall.sigma in the
lambda sigma package. These variables are constants used by the Lambda-Sigma Jump process
and control the random number distributions of the process. It is called once before each run of the
BATMAN simulation. Its formal interface is as follows:

extem void initrandomjumpo

9.3.2 randomjumptime

This function updates the X(t) term in the sonar equations. It is called once for every detection
opportunity of each detection unit. A global Lambda-Sigma Jump process contributes half of the
X(t) term and a Lambda-Sigma Jump process specific to each detection unit contributes the other
half. Its formal interface is as follows:

void randomjump time(lambda sigma)
JUMP *lambda-sigma; /* variables for the Lambda-Sigma Jump process */

- 75 -

BATMAN & ROBIN Database Descriptions I
9.3.3 sonar I
This function calculates the sonar equation for a specified sonar and target to determine if a
detection has occurred. Its formal interface is as follows:

I
extern void sonar(dp, pp, ux, uy)

DETECTNODE *dp; /* the sonar detection unit *I
PLATFORM *pp; /* the target platform */
int ux; /* distance along x-axis from sonar to target */
int uy; /* distance along y-axis from sonar to target */ I

I
This function examines a field in *dp to determine if the sonar is active or passive, and then
calculates the appropriate sonar equation, either the active or passive. The ux and uy parameters are
used to determine the distance from the sonar to the target platform. If the sonar successfully U
detects the target, then the target platform (*pp) is added to a list that is kept in the sonar (*dp).

Part IV: Database Descriptions i

10.0 Purpose and Scope

This part of the document describes the BATMAN & ROBIN databases. It is intended primarily
for software-maintenance personnel. However, those individuals with a technical background who
want to understand the organization of the databases may also benefit from reading this part of the
documentation. At this time, the databases described herein are completely unclassified and
initially intended for development and evaluation purposes only. These databases which are
independent of the simulation software can be made classified if so desired. The following
sections describe the Parameter, Scenario, Graphic, and User Databases. I
11.0 Parameter Database

The Parameter Database contains operational attributes of air, surface, and subsurface platforms,
sensors, weapons, sonobuoys, and miscellaneous system-configuration parameters. BATMAN &
ROBIN was designed and developed to be generic and adaptable. That is, platforms, weapons, or
system-configuration parameters may be easily added, deleted, or modified without changing
source code. Relevant parameters are stored in a standard text file that can be altered with any text
editor, e.g., vi. This text file is referred to as the Parameter Database, and can be either classified
or unclassified depending upon the user's needs.

11.1 Hybrid Ndbm Relational Database Model

BATMAN & ROBIN retrieves values from the Parameter database using a hybrid ndbm relational
database model. Several relational and object-oriented database management systems were

-76- I
I

BATMAN & ROBIN Database Descriptions

evaluated in choosing this hybrid ndbm implementation (see Appendix C, Relational Database
Considerations and Issues). We began using an ndbm implementation, but soon realized three
significant drawbacks to this package: (a) the total size of a key/data record could not exceed 4,096
bytes; (b) concurrent updating and reading is risky since ndbm utilizes no file-locking or reliable
cache flushing; and (c) the ndbm database would be difficult to modify since it is not stored in
ASCII format. To mitigate these deficiencies, we designed a hybrid ndbm system that maintains
the original objectives stated in Appendix C, Relational Database Considerations and Issues.

In our hybrid approach, we wrote database access and maintenance routines in C modeled after
ndbm. We also maintained the original file syntax of the Parameter database and kept it in ASCII
format, easing modificatioi. to the database and facilitating frontending the database with a
graphic interface (see Section 8.10, Database and Graphical-Frontend Packages).

This database design does not preclude us from using more sophisticated databases in the future.
If other groups need to connect our database to ORACLE, INGRESS, SYBASE, or some other
commercial database, code could easily be written to extract the necessary values from these
databases and store them in the target database.

11.2 Location and Format

The Parameter Database is located in the directory specified by the Unix environment variable
DATABASE as indicated in the user's .ogin file. If this variable is undefined, it defaults to /nprdc/
wargame/batman/batdb. The Parameter Database is distributed in the following files:

assignments.db asw.db blueair.db blueparamis.db
blue ships.db bluesubs.db blue weapons.db browser.db
colors.db ew.db greenair.db green params.db
green ships.db green subs.db jtids.db pictures.db
radar.db redair.db redparams.db red ships.db
red subs.db red weapons.db stats.db sysparm.db
user funcs.db

The lines in these files consist of an object, parameter, and value, formatted in the following way:

/object/parameter "value"

An object specifies the name of a platform, weapon, sensor, sonobuoy or some other parameter,
e.g., F-14. A parameter represents an attribute of an object, e.g., altitude. A value assigns a
particular number or string to the parameter, e.g., 30,000 feet. The value must be enclosed by
quotation marks. For example, the following line would tell BATMAN & ROBIN that F-14s
should fly at 30,000 feet:

/F-14/altitude "30000"

The following entries provide further elucidation of how objects are defined in BATMAN &

- 77 -

BATMAN & ROBIN Database Descriptions U
ROBIN:

/F-14/class "platform"
/F- 14/forceid "blue"
/F- 14/stats type "air"
/F-14/longname "Tomcat"
/F-14/altitude "30000" [

These values define the "F-14" as a Blue air platform flying at 30,000 feet, which can be referred
to as "Tomcat".

For the purposes of this discussion, the Parameter database is divided into ten sections: (a)
Platform, (b) Weapon, (c) Sensor, (d) JTIDS, (e) ASW, (f) Icon, (g) System-Configuration, (h) n
Performance-Measures, (i) User-Database, and 0) GFED.

11.3 Platform Parameters i
alert_pic: the alert icon displayed on a platform's launch panel. This parameter is only relevant for
surface platforms and land bases.

value: the name of the file that contains the icon.

altitude, rltitudemax and altitudemin: a platform's default, upper, and lower bounds in feet
above or below sea level.

value: air platforms greater than zero, surface platforms zero, and subsurface platforms less 5
than zero.

antennas: available antennas for a JTIDS-capable platform. 3
value: a list of antennas separated by spaces where each is an antenna object (see Section
i 1.6, JTIDS Parameters) defined elsewhere in the Parameter Database, e.g.,

/E-2C/antennas "E-2Cleftantenna E-2Crightantenna"

i
/E-2Cleftantenna/name "LEFT"
/E-2Cleftantenna/power "1200"
/E-2CIeftantenna/transmit_pattern"360"
etc.

auto loadout: whether weapons should be automatically loaded onto the platform by the system

at initialization time, rather than manually by the person using BATMAN & ROBIN.

value: y (yes) or n (no); the default is n.

base_types: the platform types that a platform can launch from and return to. This parameter is 3
-78-

I

BATMAN & ROBIN Database Descriptions

only relevant for air platforms.

value: a list of platforms separated by spaces, e.g.:

/F-14/base-types "Nimitz Base"

caps.and chains: whether or not the combat-air patrol (CAP) and chainsaw icons should appear
on a platform's launch panel. This parameter is only relevant for surface platforms and land bases.

value: y or n.

change_direction.func: the name of the C function called when the user moves a platform.

value: currently, change.plat direction is appropriate for all platforms.

class: indicates an object's type.

value: PLATFORM, WEAPON, RADAR, SONAR, SONOBUOY, or TAIL (i.e., tail
sonar).

detection: the detection-units (sensors) associated with a platform.

value: a list of sensors separated by spaces where each is a sensor object (see Section 11.5,
Sensor Parameters) whose parameters are defined elsewhere in the Parameter Database.
The following example allocates two sensors to each F/A-18. whose attributes are expected
to be defined later in the Parameter Database:

/FA- 18/detection "FA-18air radar FA-18surf radar"

/FA-18airradar/range "100"
/FA- 18airradar/points "4"
/FA- 18air radar/azimuth "90"
etc.

draw func: the name of the C function called to draw a platform's icon.

value: drawplat-mb.jammed will not draw a Blue platform when it is jammed;
draw_plataocj will not draw a Red platform unless it has been detected; and
draw-missile will draw Red-force AS missiles.

for detection: Whether or not the identified sensor for this latform should have its detections
processed during BATMAN. This parameter provides a mechanism for ignoring irrelevant sensors
to optimize BATMAN, thereby improving its user-response time.

value: y or n; the default is y.

force-id: whether a platform belongs to the Red or Blue force.

- 79-

BATMAN & ROBIN Database Descriptions U
value: BLUE or RED. I

fuelcons launch: This platform's fuel-consumption in pounds during launch.

value: a positive integer varying by platform.

fuel consumption full_power: This platform's fuel-consumption rate in pounds-per-hour when
traveling at speed fullpower. I

value: a positive integer varying by platform.

fuelconsumptionlaunch: This platform's fuel-,-onsumrption rate in pounds-per-hour when
launching.

value: a positive integer varying by platform.

fuel consumption_max-conserve: This platform's fuel-consumption rate in pounds-per-hour
when traveling at speed maxconserve.

value: a positive integer varying by platform.

fuelmax: the maximum amount of fuel in pounds that an air platform can carry.

value: a positive integer. 3
hittolerance level: the amount of damage a platform can withstand before being destroyed (see
Apperndix B, BATTLE-DAMAGE-ASSESSMENT SIMULATION). This parameter is used in
conjunction with a weapon's damagepts to model platform damage (see Section 11.4, Weapon
Parameters).

value: equal to or greater than one. Air platforms are generally assigned a tolerance level 3
of one; surface and subsurface platforms are assigned greater tolerance levels depending on
their displacement.

give-fuel: the amount of give fuel in pounds a tanker aircraft, e.g., KA-6D, usually carries.

value: a positive integer. 3
idnumber: a unique number assigned to each type of object that BATMAN & ROBIN uses to
identify it.

value: refer to Table 5 for the range of valid ID numbers of different platforms.

keepout range: Detections within this keep out range will be evaluated by the platform when it 3
is occupied, e.g., escorting a threat, refueling, moving in for a VID, etc..

value: A positive integer significantly smaller than surveillancerange. For optimal
BATMAN performance, this parameter should not be larger than necessary.

kill.priority: Priority used to help platforms determine whom to attack.

value: a positive integer greater than or equal to one.

- 80-

I

BATMAN & ROBIN Database Descriptions

largepicture: the large icon of a platform or weapon.

value: the name of the file that contains the graphic object.

long_name: the NATO, or other, name for a platform, e.g., "BACKFIRE" for the Soviet TU-26.

value: depends on the platform.

Table 5

Object Identification Numbers

Object Type Id Number

Blue Air 0-99
Blue Surface 100 - 199
Blue Subsurface 200 - 299
Blue Weapons 300 - 399
Blue Sonobuoys 400 - 499
Red Air 500-599
Red Surface 600 - 699
Red Subsurface 700- 799
Red Weapons 800- 899
Green Air 900-999
Green Surface 1000- 1099
Green Subsurface 1100 - 1199

max-attackers: The maximum number of enemy platforms that will close to attack this platform.

value: a positive integer greater than or equal to one.

medium.picture: the medium-size icon of a platform or weapon.

value: the name of the file that contains the graphic object.

minvisiblecrosssection: a platform's cross-section used by the detection algorithm to mimic
sighting it.

value: a positive integer.

mission: The smart-platform's default mission, i.e., the FSA it executes or follows.

value: to date, the available missions are: BLUE_ATTACKAIRCRAFTMISSION,

-81 -

BATMAN & ROBIN Database Descriptions U
BLUEFIGHTERAIRCRAFTMISSION, BLUEAIRSURVEILLANCEMISSION, i
BLUEAIRTANKERS_MISSION, BLUEAIRASWMISSION,
BLUESHIPSMISSION, BLUESUBMARINES MISSION, GREEN AIR MISSION,
GREEN-_SHIPS_MISSION, GREENSUBMARINES-MISSION,
RED ATTACKAIRCRAFTMISSION, REDAIRSURVEILLANCEMISSION,
REDFIGHTERAIRCRAFTMISSION, REDSHiPSMISSION,
REDSUBMARINESMISSION, and REDANTISHIPMISSILEMISSION.

patterns: the sonobuoy patterns that an ASW platform can lay (see Section 8.7.1,
Asw.patterngenerator). This parameter is only relevant for ASW air platforms, i.e., SH-2, SH- l
3, SH-60, S-3, and P-3C.

value: a list of sonobuoy patterns separated by spaces, e.g.: 3
/SH-2F/patterns "barrier chevron circle semicircle freelance"

prefix: the label displayed below a platform's icon during BATMAN & ROBIN. i
value: any string with four or less characters.

radar cross section: a platform's radar-cross section used by the detection algorithm.

value: a positive integer. 3
rotateresolution: rotate resolution used for making platforms point in thc direction that they
move. 3

value: a number between I and 360 that indicates the number of possible orientations of the
platform icon. A value of 1 indicates that an orientation is possible every single degree, i.e.,
360 icons; while, a value of 360 indicates that only one icon orientation is possible for this 3
platform, i.e., one icon pointing vertical.

sidepicture: a side-view icon of a platform. 3
value: the name of the file that contains this graphic object.

small_picture: a small icon of a platform or weapon. 3
value: the name of the file that contains the graphic object.

self-noise: a list of self-noise levels in decibels produced by a platform for each knot of speed. For i
example, if the maximum speed of a platform is 30 knots, then the list of self-noise values must
include 31 numbers: one for when the platform is not moving, and one for each knot of speed. The
first number in the list represents that a platform is not moving, and the last number in the list U
represents that a platform is moving at maximum speed. This parameter is used by the active and
passive sonar-detection models (Buoni, 1989) as a component of Noise Level (NL), and is only
relevant for surface and subsurface platforms.

value: a list of positive integers. 3

-82- 3
I

BATMAN & ROBIN Database Descriptions

sonar: the sonars available to a platform.

value: a list of sonars separated by spaces, e.g.,

/P-3C/sonobuoydetection/sonar "SSQ-36 SSQ-53 SSQ-62 SSQ-77"

or:

/LosAngeles/taildetection/sonar "tail"

The detection unit used by a sonar is included as part of the parameter, e.g.,
"/sonobuoydetection" in the P-3C example above.

source level: a list of sound-source levels in decibels produced by a platform for each knot of
speed. For example, if the maximum speed of a platform is 30 knots, then the list of source-level
values must include 31 numbers, one for when the platform is not moving, and one for each knot
of speed. The first number in the list represents that the platform is not moving and the last number
in the list represents that the platform is moving at maximum speed. This parameter is used by the
passive sonar-detection model (Buoni, 1989), and is only relevant for surface and subsurface
platforms.

valv~e: a list of positive integers.

speed def, speed_max and speed min: the default, upper, and lower velocity bounds of a
platform or weapon in nautical miles per hour.

value: positive integers.

speed fuli.power: This platform's speed when traveling at full-military power.

value: a positive integer varying by platform.

speed_maxconserve: The most fuel-efficient speed for this platform.

value: a positive integer varying by platform.

statstype: a platform's type used by the performance-measurement utility.

value: AIR, SURF, SUB, or MISSILE.

surveillancerange: Detections within this surveillance range will be evaluated by the platform
when it is unoccupied.

value: If this platform's mission is BLUE FIGHTERCAPMISSION, then this value
should be '.vice the fighter_sectorradius; otherwise, it should be equal to the longest
range weapon this platform can fire. For optimal BATMAN performance, this parameter
should not be larger than necessary.

tanker types: tanking platforms that can refuel a particular platform. If it is a tanker, then this lists
the aircraft that it can refuel.

- 83 -

BATMAN & ROBIN Database Descripticils I

value: a list of platforms separated by spaces, e.g.: U
/KA-6D/tankertypes "A-6 A-7 F-14 FA-18 A-4 F-4"

target-strength: the target strength in decibels of a platform. The value of this parameter is
dependent on the size of the target platform: the larger the target platform, the greater the
target-strength. This parameter is used by the active sonar-detection model (Buoni, 1989), and is
only relevant for surface and subsurface platforms.

value: a positive integer.

visual-range: the approximate distance a platform's pilot or captain can see in nautical miles.

value: a positive integer.

weapons: the types and number of weapons that a platform can carry.

;-akuc: a list of weapons separated by spaces where each type is prefixed by a positive I
integer. If the weapon is not prefixed by an integer, then the number defaults to one. For
example, the following allocates two Harpoon missiles and one Rockeye missile to the A-
6 aircraft:

/A-6/weapons "2 harpoon rockeye"

11.4 Weapon Parameters

altitude-max and altitudemin: the maximum and minimum altitude of the target platform.

value: a positive integer.

damagepts: the amount of damage a weapon will inflict on itQ target at impact. This parameter is
used in conjunction with a platform's hit tolerancelevel to model platform damage (see Section
11.3, Platform Parameters).

value: a positive integer. i
max launch altitude and rain launch altitude: the maximum and minimum altitude of the
platform that fires this weapon.

mnemon: the mnemonic name of a weapon which is used to identify it in BATMAN.

value: any string with four or less characters.

prob_kill: the probability of the weapon destroying its target. i

value: an integer between 0 and 100.

range- the maximum effective distance in nautical miles of a weapon. 3
value: a positive integer.

roundsper-burst: the number of rounds fired in one burst by simulated guns on Blue platforms. 3
RA'

- Rd -!

BATM AN & ROBIN Database Descriptions

value: a positive integer.

time for tar: The time in seconds that this weapon needs its target acquisition radar (TAR) on
before it fires.

value: a positive integer varying by weapon.

tarname: The name of the TAR this weapon uses for fire control.

value: The name of the TAR, e.g., "Down Beat".

weapontype: The weapon's type.

value: Either PROJECTILE WEAPON or MISSILE WEAPON.
PROJECTILEWEAPONs, when they are successful, instantaneously hit their targets and
inflict damage. MISSILEWEAPONs travel to their target at a specified speed and can be
detected and nte-,epti

11.5 Sensor Parameters

altitude max and altitude-min: a sensor's upper and lower bounds in feet above or below sea
level.

value: positive and negative (subsurface) integers.

azimuth: the azimuth of radar or sonar coverage in degrees.

value: a positive integer between 1 and 360.

counter-range: the passive ESM- or counter-detection distance for this radar in nautical miles.

value: a positive integer greater than the emitting radar's range.

detect-func: th~e name of the C function called to detect platforms.

value: a C function name.

detection threshold: the detection threshold in decibels used by the active and passive sonar-

detection models (Buoni, 1989). The detection threshold is the ratio of signal to noise that
constitutes a detection for a particular sonar device. See Urick (1983) for a detailed description of
this value.

value: a positive integer.

directivity: the directivity index in diecibels used by the active and passive sonar-detection models
(Buoni, 1989). The directivity index is a measure of the sensor's ability to detect sound from all

directions. Urick (1983) contains a detailed description of the derivation of this value.

value: a positive integer.

effective altitude min and effective altitude max: the minimum and maximum altitudes a

sesor can detect. For example, sonar's effective altitudemiii might be -100, and its

- 85 -

BATMAN & ROBIN Database Descriptions I

effective altitude-max might be -1.

value: an integer.

emit bands: The ESM bands that this sensor emits on. N
value: list of upper-case letters separated by spaces, e.g., I J".

emitter name: The name of this sensor.

value: varies by sensor, e.g., "Don Kay".

min_target cross section: the minimum cross-section size of a platform that a particular sensor
can detect.

value: a positive integer.

points: the number of points in the polygon that depicts radar or sonar coverage.

value: an integer between 4 and 16.

range: a sensor's radar range in nautical miles. -

value: a positive integer.

source level: the source level in decibels used by the active sonar-detection model (Buoni, 1989).
The source level is the amount of sound produced by an active sonar device.

value: a positive integer. i
11.6 JTIDS Parameters I
circuit/ac: the types of platforms allowed in a JTIDS air-control circuit.

value: Currently: E-2C, EA-6B, F-14, F-18, A-18, S-3B, Ticonderoga, and Nimitz.

circuit/if: the types of platforms allowed in a JTIDS fighter-to-fighter circuit.

value: Currently: F-14 and F-18.

circuit/surv: the types of platforms allowed in a JTIDS surveillance circuit.

value: Curreintly: E-2C, EA-613, F-14, F-18, A-18, S-3B, Ticonderoga, and Nimitz. I
name: the name of the specific antenna referred to by BATMAN & ROBIN.

value: LEFT, RIGHT. TOP, BOTIOM, or MAIN.

power: the antenna's power in watts.

value: a positive integer.

transmitpattern: the antenna's detault transmit pattern in degrees.

-86- I

I

BATMAN & ROBIN Database Descriptions

value: 0, 45, 90, 180, or 360.

receive.pattern. the antenna's default receive pattern in degrees.

value: 0, 45, 90, 180, or 360.

pattern loadout: when present, this parameter identifies an antenna pattern that must be selected.

value: transmit or receive.

hotspot x: the x-coordinate mouse location for the particular antenna, relative to (0,0) on the
platform icon that carries the antenna (see Section 8.2.2, Jtids antenna-load).

value: calibrated by the programmer for each user-selected antenna.

hot spot.y: the y-coordinate mouse location for the particular antenna, relative to (0,0) on the
platform icon that carries the antenna (see Section 8.2.2, Jtids antenna-load).

value: calibrated by the programmer for each user-selected antenna.

angle: direction the antenna points where 90 degrees points up.

value: 0, 90, 180, or 270 (typically 0 for RIGHT antennas, 90 for TOP antennas, 180 for
LEFT antennas, vnd 270 for BOTI'OM antennas).

11.7 ASW Parameters

The ASW parameters are divided into Patterns, Environment, and Sonobuoys."

11.7.1 Patterns

CZ: the distance ir nautical miles used to represent convergence zones (CZs) which is used in
spacing sonobuoys for some patterns.

value: a positive real number, typically between 28 and 32.

clicks: the number of mouse clicks required by the user to indicate where a sonobuoy pattern
should be located (see Section 8.7.1, Asw_patterngenerator).

value: 0 for the freelance pattern, 2 for linear patterns (e.g., barrier), and 3 for geometric
patterns (e.g., circle).

line click: used for geometric patterns and indicates when an orientation line should be specified

and drawn for the pattern.

value: 2 is appropriate for all geometric patterns.

MDR: the distance in nautical miles used to indicate median-detection-range (MDR) which is
sometimi,. -d for sonobuoy spacing.

value: 2 poit;-,,e r iunive, typically I.:.

picture: the icon used for selecting a specific sonobuoy pattern during BATMAN.

- 87 -

BATMAN & ROBIN Database Descriptions I

value: the name of the file that contains the icon.

tail length: the length in nautical miles of towed sonar arrays or tails attached to ships and
submarines.

value: a positive integer.

taiLspacing: the spacing between sonars on a towed array or tail.

value: a positive integer. 3
11.7.2 Environment

ambient noise: the ambient noise level in decibels for each of BATMAN & ROBIN's warfare
theaters. I

value: a positive integer. n

lambda: one of the values that determines random number distributions for the Lambda-Sigma
Jump process (Buoni, 1989).

value: a positive integer.

sigma: one of the values that determines random number distributions for the Lambda-Sigma Jump
process (Buoni, 1989). U

value: a positive integer. 3
transmissionloss: a list of transmission loss values in decibels for each nautical mile of range.
The first value is the transmission loss at zero nautical miles. The last value is the transmission loss
at 119 nautical miles. The formula, 3

TL = 20 log r + a x .001,

where r is the range in yards (2025 yards per nautical mile), and a is the absorption coefficient, was I
used to generate the current transmission loss values. See Urick (1983) for a complete description
of this formula.

Convergence zones are simulated by lowering the transmission loss values for those ranges where
convergence zones occur. The following is a sample list of transmission loss values where the
convergence zone values are shown in boldface:

/northatlantic/transmission loss "0 69 78 85 90 95 100 104 108 113 117 120 124 128 132 135 139
142 146 149 153 156 160 163 167 170 173 177 180 183 187 190 193 197 200 69 69 69 213 216
220 223 226 229 233 236 239 242 246 249 252 255 258 262 265 268 271 274 278 281 284 287
290 293 297 300 303 306 309 312 101 101 101 101 101 331 335 338 341 344 347 350 353 357
360 363 366 369 372 375 379 382 385 388 391 394 397 401 404 407 410 413 416 419 422 120
120 120 120 120 120 120 447 450 454 457 460 463 466 469 472"

As shown in the above example, there must be a list of transmission loss values for each of
BATMAN & ROBIN's warfare theaters.

-88- 3I

BATMAN & ROBIN Database Descriptions

value: a list of positive integers.

11.7.3 Sonobuoys

depth: the specifiable depths in feet below sea level that a sonobuoy type can descend.

value: either a list of discrete numeric values or a range of values. For example, the SSQ-
53 can be laid at one of three discrete depths, as in:

/SSQ-53/depth "90 400 1000",

while the SSQ-36 can be directed to a range of values, as in:

/SSQ-36/depth "0.. 1000"

dipping: whether or not a sonar can be dipped and retracted from helicopters.

value: y if the sonar can be dipped; n otherwise.

life: specifiable minutes indicating a sonobuoy type's longevity.

value: a list of numeric values or a range of values.

mode: indicates whether a sonobuoy is active or passive.

value: active or passive.

power: the power in watts used to energize a sonobuoy.

value: a real number.

rfchannels: available radio channels on which a sonobuoy type can communicate.

value: a list of numeric values or a range of values.

11.8 Icon Parameters

The following parameters identify icons used by BATMAN & ROBIN. The value of each is the
name of the file that contains the icon.

air_explopic: the icon that depicts the destruction of air platforms in BATMAN.

air.pic: the NTDS (Navy Tactical Data System) icon for Blue and Red air appearing in the right
strip in BATMAN used to view, or noL view, the air battle.

air radar-pic: the Blue and Red NTDS air icon appearing in the right strip in BATMAN used to
turn air radar coverage on or off.

air status-Pic: the NTDS icon for Blue air appearing in the right strip in BATMAN used to view
the status of aircraft for TFA, TFB, or TFC.

alert.pic: the icon used to access the placement of aircraft on Alert or Ready 5, 15, and 30.

- 89-

BATMAN & ROBIN Database Descriptions I
basepic: The airfield-base icon used by Blue, Red, and Green forces I
base retatepic: the icon used to rotate between the available home-base platforms in ROBIN.

batman-intro.pic: the header or preceding display shown before BATMAN.

bigusflag: the American-flag icon used in the select "Performance Measures" interface.

bigusussr flag: the American/Soviet-flags icon used in the select "Performance Measures"
interface.

big.ussr.flag: the Soviet-flag icon used in the select "Performance Measures" interface.

cap.pic: the CAP (Combat Air Patrol)-station icon appearing in the right strip during the 3
deployment phase of BATMAN.

chaff_pic: the icon used to depict chaff in BATMAN & ROBIN. 3
chainpic: the chainsaw icon appearing in the right strip during the deployment phase of

BATMAN.

checkspic: the icon used to depict the track highlighter during track laying in ROBIN.

clear_pic: the icon that depicts the screen-clear operation during deployment in BATMAN. 3
emcon: The vertical-EMCON icon, i.e., "EMCON" written vertically, used to turn on the radars of
a task-force during BATMAN. 3
esmstatus: The icon used to display the ESM status window during BATMAN.

grey25_pic: an icon that provides highlighting in ROBIN. When the user views warfare theaters
by selecting areas from the miniature world map in the upper-left corner of ROBIN, the I
grey25_pic is used to highlight the user's current selection.

grey75_pic: an icon used as a pattern for drawing the arrows attached to the zoom box. I
gridpic: the icon used to access the specification of the vector-logic grid radius.

hammerpic: the Soviet hammer-and-sickle icon used to bring in the Red force in BATMAN.

hitexplopi: the icon that depicts a weapons hit against a platform.

hookpic: an icon of the small box used to enclose the number of Red aircraft in a swarm at a
particular point in ROBIN.

horizontal line: an icon of a horizontal line used to form part of the pop-up-message windows
displayed in BATMAN & ROBIN.

horizontal shadow: an icon of a horizontal drop-shadow line used to form part of the pop-up- I
message windows displayed in BATMAN & ROBIN.

lat-lon.pic: the icon used to go directly from loadout to deployment, bypassing grid specification. I

-90- I
I

BATMAN & ROBIN Database Descriptions

loadout.map.pic: the icon used to return to the warfare theater from loadout in BATMAN.

loadout next.pair.pic: the icon used to display tile next pair of aircraft on a carrier or other home
base to be loaded out in BATMAN.

move.pic: the icon that represents moving or changing positions of platforms, CAPs, and
Chainsaws during deployment.

nprdc-logo.pic: the NPRDC logo icon.

ntds.blueairsymbol: :he NTDS icon for Blue- or Console-force aircraft.

ntds.blue_sub._symbol: the NTDS icon for Blue submarines.

ntds_blue surf symbol: the NTDS icon for Blue surface platforms.

ntds.red-ahr symbol: the NTDS icon for Red- or path-force aircraft.

ntds.redsub.symbol: the NTDS icon for Red submarines.

ntds redsurfsymbol: the NTDS icon for Red surface platforms.

past esm: The icon used to display lost ESM contacts during BATMAN.

portyic: The port icon used by Red and Green forces.

radar-toggle: The EMCON-icon displayed that, when engaged, allows the user to turn on
individual platform's radar during BATMAN.

removepic: the icon that represents erasing platforms, CAPs, and Chainsaws during deployment.

robin intropic: the introductory title to ROBIN.

search radar: The icon used to depict Red and Green force radar during path specification in
ROBIN.

single statusjpic: the icon used to turn on single platform status or fixment during BATMAN.
When single-status mode is on, selecting a platform on the map will display its status window.
When single-status mode is off, selecting a platform on the map will go on board the platform and
display its launch panel.

smblue air ntds: a small Blue-force air NTDS icon.

sm blue sub ntds: a small Blue-force subsurface NTDS icon.

sm blue surf ntds: a small Blue-force surface NTDS icon.

smgreen-air-ntds: a small Green-force air NTDS icon.

singreen sub ntds: a small Green-force subsurface NTDS icon.

sm_greensurf ntds: a small neutral- or Green-force surface NTDS icon.

-91 -

BATMAN & ROBIN Database Descriptions U
sm red air ntds: a small Red-force air NTDS icon. I
smred sub ntds: a small Red-force subsurface NTDS icon.

sm red surf ntds: a small Red-force surface NTDS icon.

smworldpic: the miniature world map used to select wat~are theaters in ROBIN.

small cap.pic: the icon displayed where the user positions CAP-stations during BATMAN.

small chain dot.pic: an icon of a small dot representing the end-points of a chainsaw during
BATMAN.

sonarpic: the icon ipl.:.aring in the right strip in BATMAN containing Blue air, surface, and
subsurface and Red subsurface NTDS symbols used to display sonar coverage.

statuspic: the icon used in BATMAN to display the status of a task force's air or surface
platforms.

subsurf explopic: the icon that depicts the destruction of subsurface platforms in BATMAN.

subsurf.pic: the Blue and Red NTDS subsurface icons appearing in the right strip in BATMAN
used to view, or not view, the subsurface battle.

surf explo.pic: the icon that depicts the destruction of surface platforms in BATMAN. I
surfjpic: the Blue and Red NTDS surface icons appearing in the right strip in B3ATMAN used to
view, or not view, the surface battle. I
surf radarpi: the Blue and Red NTDS surface icons appearing in the right strip in BATMAN
used to turn surface radar coverage on or off. 3
surf statuspic: the NTDS icon for Blue surface platforms appearing in the right strip in
BATMAN used to view the status of surface platforms for TFA, TFB, or TFC.

task force_pic: a generic task force icon appearing in BATMAN during aircraft loadout used to
view again ships in a task force.

tfastatuspi, tfb statuspic, and tfc statuspic: the icons appearing in the right strip in
BATMAN used to specify which task force's status to display.

vertical line: an icon of a vertical line used to form part of the pop-up-message windows displayed I
in BATMAN & ROBIN.

vertical shadow: an icon of a vertical drop-shadow line used to form part of the pop-up-message U
windows displayed in BATMAN & ROBIN.

viewradar: The icon used to depict Red and Green force radar during the ROBIN viewer. i

vlpic: the Victor-Lima (V/L) icon used to indicate the defended point.

warningspic: The warnings icon used to change Blue-force warnings and weapons status during I
-92-

I

BATMAN & ROBIN Datab -e Descr:ptions

BATMAN.

weapons_radar: The icon used to depict TAR.

zoom_pic: the icon in BATMAN that represents the zoom function.

11.9 System-Configuration Parameters

bigjont: the large font used in BATMAN & ROBIN, e.g., in task force status windows or boards.

value: the name of the file that contains the font.

colormap: the color map used in BATMAN & ROBIN which is viewed as a palette of colors each
represented by three numbers that specify the red, green, and blue hues.

value: an absolute pathname to the file containing the color map.

data_path: the complete pathname to the directory that con'ains BATMAN & ROBIN sc. lnarios.

value: an absolute pathname to a directory.

debugon: Whether or not debugging error messages should be printed during BATMAN &
ROBIN. Generally set to y by the programmer during debugging.

value: y or n.

demo scenario number: the number of the scenario that is presented in the BATMAN & ROBIN
demonstration.

value: the identification number of an exis--t;- scenario.

displayheight: the vertical resolution of the display window in pixels.

value: a number between and including 0 and 1152. The recommended value is 1142.

display_left: the x location of the upper-left corner of the display window for BATMAN &
ROBIN specified as a pixel offset from (0,0).

value: a number between and including 0 and 1152. The recommended value is 0.

displaytop: the y location of the upper-left corner of the display window fcr BATMAN &
ROBIN specified as a pixel offset from (0,0).

value: a number between and including 0 ann 900. The rec,,inmended ,alue is 0.

display_width: the horizontal resolution of the display window in pixels.

value: a number between and including 0 and 900. The recommended value is 870.

escort dist back tenth nm: Th distance from behind that an escort platform should be from the
platform it's escorting.

value: a positive integer (nautical miles).

- 93 -

BATMAN & ROBIN Database Descriptions

escort dist sidetenthnm: The distance to U'." side that an escort platform should be from the
platform it's escorting.

value: a positive integer (nautical miles).

escort thr-'at dy: The number of escor' eat-units in the y-direction that an escort platform
should be from the platform it's escort;

value: a positive integer.

esm lost contact removedist: the distance in nautical miles that a los SM contact should n
travel at its current velocity before it is removed from the BATMAN displa,.

value: a positiv,. integer. 5
esm-sho v-blue tar: Whether or not Blue-force TAR should be displayed during BATMAN.

value: y or n. n

esm status rem3ve dist: the distance in nautical miles that a lost ESM contact should travel at
its current velocity before it is removed from the ESM status window.

value: a positive integer.

fightersectorradius: The default sec'or radius for platforms flying a
BLUEFIGHTERAIRCRAFT MISSION.

value: To date, 250 nautizal miles. 5
fonts: the complete pathname to the directory that contains the fonts used in BATMAN & ROBiN

value: an absolute pat], iame to a directory. U
green/air: the NATO names of the Green aircraft.

value: a list of Green air NATO names separated by spaces.

green/fighter: he NATO names of the Green fighter aircraft.

value: .list of Green fighter NATO names separated by spaces.

green/ship: the NATO names of the Green surface platforms.

value: a list of Green surface NATO names separated by spac,:s.

green/sub: the NATO names of the Green subsurface platforms. U
value: a list of Green subsurface NATO names separated by spaces.

grid max radius: the maximum radius of the vector-logic grid.

value: a positive integer larger than gridminradius.

-94- I

U

BATMAN & ROBIN Database Descriptions

gridmrinradius: the minimum radius of the vector-logic grid.

value: a positive integer smaller than grid max radius.

guidenames: a list of the home-base platforms available in BATMAN & ROBIN.

value: a list of platforms separated by spaces, e.g.:

/sysparm/guide names "Nimitz Tarawa Base"

I heapdebuglevel: a debugging tool used to flag dynamic memory allocation errors. It is intended
to be used by the software-maintenance engineer, and requires an understanding of the C
malloc debug function (SunOS Reference Manual, 1990).

value: set this value to 0 for Level 0 mallocdebug error checking, 1 for Level 1, or 2 for
Level 2.

Ihostpasswd: a security measure used to insure that BATMAN & ROBIN only run on designated
host computers.

I value: a string of characters.

in-color: whether BATMAN & ROBIN is to be run in color or black-and-white.

value: y for color; n for black-and-white.

itroffeommand: the Unix command used to print performance measures on a laser printer.

value: a valid Unix print command, e.g., "ptroff" (assuming enscript software loaded).

mapfont: the font used to write latitude and longitude labels, e.g., 40.00n.

value: the name of the file that contains the font.

masterpasswd file: the file that contains the system -administrator's password.

value: an absolute pathname to the file.

med font: the medium-size font used in BATMAN & ROBIN.

value: the name of the file that contains the font.

mother nanes: a list of the mother or home-base platforms in BATMAN & ROBIN.

value: a list of platforms separated by spaces, e.g.:

/sysparm/mother names "Nimitz Tarawa Base"

msecengineupdate interval: the amount of processor time in milliseconds dedicated to each
call of simulation-engine before it returns control to the SunView windowing and input system
(see Section 8.4.3, Engine).

value: the recommended value is 15.

I -Q5 -

BATMAN & ROBIN Database Descriptions I

numparts: the number of horizontal partitions BATMAN's display is divided into for refreshing I
purposes in order to enhance the system's response time.

value: a positive number. The recommended value is 10. 1
patternpreview usecs: the number of microseconds that a sonobuoy-pattem preview is
displayed. I

value: a positive integer. The recommended value is 500000, i.e., one half of a second.

pic_path: the complete pathname to the directory that contains BATMAN & ROBIN icons and I
graphic objects.

value: an absolute pathname to a directory.

players-directory: the complete pathname to the directory that contains all user files.

value: an absolute pathname to a directory. I
printer: the Unix device name of the printer where performance measures are sent for hard copy.

value: a valid Unix device name for a printer, e.g., 1w.

red/bomber: the NATO names of the Red bomber aircraft.

value: a list of Red bomber NATO names separated by spaces.

red/fighter: the NATO names of the Red fighter aircraft.

value: a list of Red fighter NATO names separated by spaces.

red/ship: the NATO names of the Red surface platforms. I
value: a list of Red surface NATO names separated by spaces.

red/sub: the NATO names of the Red subsurface platforms.

value: a list of Red subsurface NATO names separated by spaces.

scalefont: the font used for the map's scale.

value: the name of the file that contains the font.

siti font: the small font used in BATMAN & ROBIN.

value: the name of the file that contains the font. I
stats title font: the font used for the "Performance Measures" title.

value: the name of the file that contains the font.

time to stop: the amount of simulated or warped time in minutes that BATMAN will run before
stopping.

- 96 - I

I

BATMAN & ROBIN Database Descriptions

value: a positive integer.

warn message font: the font used for the advisory or warning messages that are displayed prior
to BATMAN or ROBIN.

value: the name of the file that contains the font.

11.10 Performance-Measures Parameters

heads updist: the distance in nautical miles a Red-force platform must be less than to be within
"heads-up" range of a task force.

value: a positive integer.

statssaveevents: whether or not the consequences of users' tactical actions during BATMAN

should be saved to compute performance measures.

value: y if the events should be saved; n if they should not be.

stats save results: whether or not the performance measures themselves should be saved in the
users' directories.

value: y if performance measures should be saved; n if they should not be.

11.11 User-Database Parameters

button color: the color of panel-buttons to add/delete users.

value: the form string for this parameter should be "color offset". Color is specified in the
"color map" file mentioned above; offset indicates a variation in color, e.g., "red 8" would
set buttoncolor to the eighth variation of red.

playerpanel-borderpic: an icon of a thin dark horizontal line used as a border between the
"operations" and "list of users" panels displayed when the user is adding, deleting, or selecting
users.

value: the name ot the file that contains the icon.

uinfo border color: the background color of the screen when entering a new user's name and
social security number.

value: a string of the form: "color offset". See button-color above.

user.bg.color: the color of empty slots in the "list of users" panel.

value: a string of the form: "color offset". See buttoncolor above.

user.fg.color: the color of users' names in the "list of users" panel.

value: a string of the form: "color offset". See buttoncolor above.

username border color: the border color around users' names in the "list of users" panel.

- 97 -

BATMAN & ROBIN Database Descriptions I
value: a string of the form: "color offset". See buttoncolor above. I

11.12 GFED Parameters

The database files blueparams.db, redparams.db, and greenparams.db define the
characteristics of the Graphical Frontend to the Database (GFED) for Blue, Red, and Green
platforms, respectively. In particular, these databases define the changeable parameters and the
GFED sub-windows for each platform. As an example, consider the following segment from
blueparams.db:

/F-14/basic-params "hittolerancelevel killpriority radar_cross section"
/F-14/basicwin.pos "bottom"
/F-14/num_regions "4"
/F- 14/parans regionl "speed max conserve speedfull_power"
/F-14/x-regionl "0" I
/1F-1 4 /yregion 1 "40"
/F-14/widthregion1 "25"
/F- 14/height region 1 "20" U
/F-14/winpos-region1 "left"
etc.

This tells the GFED software that there are four "hot-spot" regions for the F-14 (num regions) and
gives the characteristics for regionl (xregion), yregionl, widthregion], height-regionl, and
winpos regionl). Additionally, the default or "basic" region is to be associated with the bottom
sub-window (basic winpos).

A region defines a "hot-spot" on a platform's icon. When the user selects a point within a particular
region, the parameters associated with that region are displayed in the corresponding GFED sub-
window, e.g., aircraft nose sensors, radar parameters. Regions are defined in terms of percentages I
relative to (0,0) (i.e., the upper-left corner) on the subject platform icon. Referring back to the F-
14 example above, region 1 covers 0% to 25% going from left to right (xregionl and
widthreggionl), and 40% to 60% going from top to bottom (yregionl and height regionl).
Hence, if the user selects the middle-left portion of the F-14 icon, region 1 will be triggered and its
associated sub-window will be displayed. The new parameters added in support of the GFED are
described below.

basic_params: The default changeable parameters for the platform. These are listed when the user
selects a point on the platform's icon that isn't within any of the defined regions.

value: A list of platform parameters separated by spaces.

basic win_pos: The location of the default or "basic" sub-window relative to the platform's icon. I
value: top, bottom, left, or right.

-98- i
I

DATMAN & ROI5iN Database Descriptions

num regions: The number of regions defined for the platform.

value: 1, 2, 3, or 4.

params region[N]: The changeable parameters that should be displayed when region N is
selected, where N is 1, 2, 3, or 4.

value: A list of platform parameters separated by spaces.

x_region[N]: The x coordinate that starts region N, where x is a percentage of the platform's icon
relative to (0,0) and N is 1, 2, 3, or 4.

value: Between 0 and 100, inclusive.

y_region[N]: The y coordinate that starts region N, where y is a percentage of the platform's icon
relative to (0,0) and N is 1, 2, 3, or 4.

value: Between 0 and 100, inclusive.

width region[N]: The width of region N as a percentage of the platform's icon, where N is 1, 2,
3, or 4.

value: Between 0 and 100, inclusive.

height region[N]: The height of region N as a percentage of the platform's icon, where N is 1, 2,
3, or 4.

value: Between 0 and 100, inclusive.

winposregion[N]: The location of region N's sub-window relative to the platform's icon, where
N is 1, 2, 3, or 4.

value: top, bottom, left, or right.

12.0 Scenario Database

The scenario database is comprised of standard text files which are created by ROBIN and used by
BATMAN. The Unix utilities "cat" and "more" can be used to view these files. This database is
stored in the directory specified by the datapath parameter from the Parameter Database.

Each scenario is split into three files: a Blue-force file, a Blue-force messages file, and a Path-force
file. These contain all the necessary data for the Blue-, Red-, and Green-forces for a specific
scenario. The format of the filenames is "blue", "messages", and "path" followed by a scenario
number, e.g., the files for scenario 10 would be blue.10, messages.10, and path.10. Scenario
numbers range from 1-999.

In addition to these files, there are five support files used for scenario construction and class-test
assignments: blue.1000, blue.2000, assignment index, classindex, and test-index. These files
are also located in the directory specified by data_path. The blue.1000 and blue.2000 files are
used by ROBIN as a template for building blue.n files. The remaining three support files are used
to coordinate class-test assignments: the assignment index file identifies tests that have been

BATMAN & ROBIN Database Descriptions I

assigned to classes; the classindex file identifies the students that are in each class; and the i
test-index file identifies the scenarios that are in each test.

12.1 Blue-Force File I
The Blue-force file lists air, surface, and subsurface platforms as well as weapons and sonobuoys
that are available for allocation, deployment, and management in BATMAN which reads this file
to initialize scenario data structures.

The first field in this file is the task-force designator. BATMAN & ROBIN can handle a maximum
of three Blue task forces: TFA, TFB, and TFC. Following the task-force designator line, is a list of
the platforms in a specific task force. In each line, the number of platforms is listed followed by
their NATO names.

If a platform is a guide -- Nimitz, Base, or Tarawa -- then it will have a latitude-longitude
designation after it. If the latitude-longitude designation is "0.0 0.0", then the guide has not been
preset in ROBIN, and the user is free to place it where they choose during deployment. If a platform I
is a mother, i.e., capable of carrying sub platforms, then it can have additional resources "on
board", which are enclosed between brackets ({ and }). I

When the user changes Blue-force parameters for a scenario using the GFED (see Sections 8.10,
Database and Graphical Frontend Packages, and 11.12, GFED Parameters), that change is
saved in the corresponding blue.n file. The change is tagged with the keyword PARAMETERS
which is followed by a list of changed parameters and their values. For example, the following
segment from a blue.n file indicates that the Ticonderoga's hit tolerance level should be 200:

1 Ticonderoga PARAMETERS { hittolerancelevel 200 }{ I
2 SH-60B
20 mk46
200 SSQ-53
200 SSQ-62
200 SSQ-77

12.2 Blue-Force Messages File N
The messages file contains all of the scenario's messages, including the time they occur and the
type for each message. U
12.3 Path-Force File

The Path-force file contains a summary of the tactical situation (including a list of the scenario's
Red and Green platforms) and track-movement or path definitions for each platform.

I
- 100- I

I

BATMAN & ROBIN Database Descriptions

12.3.1 Tactical-Situation Section

In a manner similar to the Parameter Database, a tactical situation is described by a set of
parameters, each holding a particular value. This provides a uniform method for describing a
variety of battle scenarios. The following is a brief description of each parameter from the Tactical-
Situation section of a Path-force file.

blue w-andw: the scenario's initial Blue-force warnings and weapons status against hostile air,
surface, and subsurface platforms.

value: the warnings and weapons status against air, surface, and subsurface platforms,

respectively.

bp: indicates a Red- or Green-force base or port.

value: tlfe ba,,e or port's type, identification number, latitude, longitude, and a list of the
platforms that initiate from the base or port.

greenplatforms indicates the name and amount of each Green platform defined for the scenario.

value: a list of Green platforms separated by spaces, where each platform is followed by a
positive integer, which indicates how many of a specific type.

red_platforms: indicates the name and amount of each Red platform defined for the scenario.

value: a list of Red platforms separated by spaces, where each platform is followed by a
positive integer, which indicates how many of a specific type.

red-wpnstatus: the Red-force's weapons status against Blue-force platforms.

value: a list of "time, weapons-status" pairs. For example, "0 tight 15 free" would indicate
"weapons tight" until the 15th second, at which time the Red-force changes to "weapons
free".

time-warp: specifies a time-warp for the scenario.

value: a positive integer.

vl latitude and vl longitude: the latitude and longitude of V/L.

value: real numbers, e.g., (vl_latitude = 15.00, vl_longitude = -80.00). The latitude and
longitude of V/L will lie somewhere in the scenario's warfare theater.

warfare-theater: the warfare area for the battle.

value: at this time the following theaters are available, but not limited to: arabiansea,
beringsea, caribbean, japan_sea, kamchatka_peninsula, mediterranean, murmansk,
northatlantic, persian gulf, and south-east asia.

123.2 Path Section

This section contains a series of text lines defining the movement-tracks or paths for Red- and

- 101 -

BATMAN & ROBIN Database Descriptions i

Green-force platforms in a scenario. Unlike the tactical situation-display parameters, the track U
definitions are listed on contiguous lines without breaks or comments. Hence, it is difficult for the
user to decipher the contents of these records. This track data is designed to be read by BATMAN
when the scenario is initialized, or by ROBIN when the scenario is modified.

Platform-track data is represented by a tree structure with nodes and vectors. A node is a location
where one or more platforms of the same type move together. Each node may have one or more
vectors depicting segments of the movement path for an individual platform or swarms of them.
Nodes must also have an origination base or port (org_bp), and can have an optional destination
base or port (dst bp). The last vector for a node is either the terminal point, or the position where U
the swarm splits into subswarms or individual platforms. For more information, see Figure 5 in
Section 7.0, BATMAN & ROBIN Global Data Structures.

When the user changes Path-force parameters for a scenario using the GFED (see Sections 8.10,
Database and Graphical Frontend Packages, and 11.12, GFED Parameters), that change is
saved in the corresponding path.n file. The change is tagged with the keyword PARAMETERS I
which is followed by a list of changed parameters and their values. For an example, refer to the
following Section, 12.3.3, Sample Path-Force File.

12.3.3 Sample Path-Force File I
The following is an example of a Path-force file. u

warfare theater: kamchatka 3
vl latitude: 46.580618
vIlongitude: 154.963363
timewarp: 60
blue w and w: air red free surf red free sub red free
red_wpnstatus: 0 free
red_platforms: RedSubPort 1 Charlie 1
greenplatforms:
bp: plat RedSubPort bpid 5 fat 46.003428 Ion 149.949852 Charlie 1 I
path-node: plat Charlie start id 45 endid 46 start-time 0.000000 orgjbp 5

PARAMETERS { hittolerancelevel 150 }
path vector: lat 45.478892 Ion 149.846345 altitude -100 speed 15
path vector: lat 44.672755 Ion 150.592310 altitude -100 speed 15
path-vector: lat 45.103233 Ion 149.497859 altitude -100 speed 15

13.0 Graphic Database

This database contains all the icons or graphic objects used in BATMAN & ROBIN. These are in
Sun raster-file format, and each exists in its own file (Pixrect Reference Manual, 1990). This
database is stored in the directory specified by the pic_path parameter of the Parameter Database.

- 102- i

I

BATMAN & ROBIN Database Descriptions

14.0 User Database

The User-Performance database contains multivariate performance measures and recorded
scenarios for the user. Each BATMAN & ROBIN user is given their own Unix directory which
contains the user's name and social security number, all performance measures to date, and any
scenarios that the user has recorded for later playback. BATMAN & ROBIN can maintain more
than names and social security numbers of users, e.g., number of flight hours or other descriptive
data.

- 103 -

BATMAN & ROBIN References I

References U
Buoni, F. B. (1989). The Design and Implementation of Detection Models for the Battle I
Management Assessment System. Unpublished masters thesis. Monterey, CA: Naval Postgraduate
School.

Butler, C.W., Hodil, E.D., & Richardson, G.L. (1988). Building knowledge-based systems with
procedural languages. IEEE Expert, 3, 47-59.

Federico, P-A., Bickel, S.H., Ullrich, R.R., Bridges, T.E. & Van De Wetering, B. (1989). BATMAN
& ROBIN: Rationale, Software Design, and Database Descriptions (TN 89-18). San Diego, CA:
Navy Personnel Research and Development Center.

Holtzman, S. (1989). Intelligent decision systems. Reading MA: Addison-Wesley.

Hutchins, E. L., Hollan, J. D., & Norman, D. A. (1986). Direct-manipulation interfaces. In D. A.
Norman & S. W. Draper (Eds.), User centered system design. Hillsdale NJ: Lawrence Eribaum
Associates.

Kernighan, B.W. & Ritchie, D.M. (1988). The C Programming Language, Second Edition. I
Englewood Cliffs NJ: Prentice-Hall.

Pixrect Reference manual. (1990). Mountain View CA: Sun Microsystems.

Raeth, P. G. (;.990). Process states as decision criteria. AI Expert, 5, 40-45. 3
Shneiderman, B. (1982). The future of interactive systems and the emergence of direct
manipulation. Behavior and information technology, 1, 237-256.

SunOS Reference Manual. (1990). Mountain View CA: Sun Microsystems. I
SunView Programmer's Guide. (1990). Mountain View CA: Sun Microsystems. 3
Sun View System Programmer's Guide. (1990). Mountain View CA: Sun Microsystems.

Urick, R. J. (1983). Principles of Underwater Sound. New York: McGraw-Hill.

1
I
I
I

- 104 - 1
I

APPENDIX A

AN O(D+(N log 2 N)) ALGORITHM

FOR RANGE/BEARING RESTRICTED SEARCH

IN TWO DIMENSIONS

A-0

BATMAN & ROBIN Willard-Lueker

AN O(D+(N log2 N)) ALGORITHM
FOR RANGFIBEARING RESTRICTED SEARCH

IN TWO DIMENSIONS

William Root
Systems Engineering Associates, Inc.

SETTING

Let N "platforms," PVP 2,...PN be arranged in 2-space, such that platform Pk is
located at coordinates <xk,yk> and aims its sensor in direction ak * The sensor
"detects" any other platform whose distance from Pi is less than or equal to rk

and whose bearing from Pk lies in the range ak + sk

PROBLEM

Given <Xk,Yk>, ak, rk, and sk for each of the N platforms { Pk I k = 1,2,..N ,

construct the list of all pairs j,k such that P. detects Pk

SOLUTION

The algorithm is a variant of the "layered range tree" method of Willard and

Lueker [WL].

First, construct a list of triples { < k , YR > I k = 1,2,...N } sorted in order of

increasing x-coordinate (primary key) and increasing y-coordinate (secondary

key). In an actual implementation, the algorithm may select from among
insertion sort, shelisort, and heapsort to perform this sort, depending on the

cardinality N of the platform set. Use of heapsort in all cases guarantees that
this phase of the -lgorithm is O(N log 2 N) . (Note: In applications of this

algorithm to tactical air gaming, empirical data suggests that the number of new
inversionr amoig a'rcraft x-coordinates per unit of time as a function the number
N of aircraft has order < O(N) ; a sort such as the Cook-Kim sort [CKJ may be
used tc advantage in this phase of the algorithm, given such an assumption).

A-1

BATMAN & ROBIN Willard-Lueker !

I
Next, construct a heap structure of 2N-1 nodes in which the key values are pairs

xu,,, ,: XuP of x-coordinate values from the above list. Thic heap structure --

referred to as the "primary heap structure" -- is easily implemented as an array of

N contiguous records using the customary embedding. Assign the x- coordinates

in the original list, left to right, in increasing order, as the key values in the leaf

nodes of the primary heap structure. That is, each leaf n,-de should contain a

pair of the form xj : x where < xi , yj > is the location of platform P for some

1 < j < N. This phase of the algorithm is clearly O(N).

The internal nodes of the primary heap structure ar- assigned key values as I
follows: x.. in the parent node equals 'aowr in the left child node; xuppr in the

parent node equals Xupper in the right child node. Each node in the primary heap I
structure thus corresponds to an interval on the x-axis. This phase of the algorithm

is clearly O(N-1) , and produces a completed structure which is both a heap

structure and a binary search tree with respect to x-coordinates of platforms.

Next, the primary heap structure is traversed bottom-up, right-to-left, and for I
each internal node P with key value pair xio,. : x ,P , a "y-list" of pairs { < k,

Yk > I X,1,11 <X., < Xupper } is constructed and sorted in increasing order of Yk by I
merging the sorted y-lists of the ieft and right children of P . Initially, the y-list

associated with each leaf node wi.h key value pair xj : x is simply the singleton {
< j, y >}. Simultaneously, we associate with each element y, of the parent y-

list two "y-pointers" into the left and right children's y-lists; namely, to that

unique minimal element yP, in the ieft child y-list for which yp < yp., and to that

unique minimal element y." in the right son y-list for which y 5. y.. It is clear

that the y-ist associated with the root of the primary heap structure is itself the

linear list equivalent of a hea) structure with the binary search property. This list

is referred to as the "y-heap". Since the nodes at any fixed depth in the primary

heap structure correspond to a partition of some subset (possibly improper) of

the set of platforms, each y-coordinate appears in at most one v-list at each

depth. Therefore the total number of y-coordinates in all v-lists at any fixed

depth is N. Since the depth of the primary heap structure is O(log: N), this

phase of the algorithm is at worst O(N log, N).

Now suppose we must determine all detections t'y platform P k

A-2 I

I

BATMAN & ROBIN Willard-L~ueker

We first determine all platforms which lie in the square of side 2 rk centered at <

xk Yk > . We start by searching the y-heap for the minimal YM such that yk-r: <

YM" Next we search the primary heap structure for that node with key value pair

X : for which xlower is minimal such that x-rk xuppr . As we descend

through the primary heap structure searching for this node, we simultaneously

descend with pointer q through the tree of y-pointers rooted at YM' miimicking

exactly the sequence of left and right branches we perform in the primary heap

structure. Each time we branch left in the primary heap structure from node w,

we process as "detected" all platforms whose y-coordinates appear at or after the

target of the right link from q into the y-list of the right-son of w (and thus, whicl

lie within the required circumsquare of the radar detection radius of Pk ;

whether the platform in question lies within the pie-shaped radar detection sector

of P k itself car be immediately determined by a vector-algebraic algorithm of

0(1)). Since at most one y-list is processed at each depth in the primary heap

structure, this subphase of the algorithm is at most O(Dlk+(log2 N)) where D,,

is the total number of detections during the descent through L.. primary heap

structure.

Finally, we repeat the above process, but this time searching the primary heap

structure for that node with key value pair x xo : xpe for which xlo, is

maximal such that xk-rk <_ x pe . The order of this subphase of the algorithmn is

ai most O(D +(og2 N)) where D2k denotes the number of deteotions daring

this descent through the pimary heap structure.

Combined, the order of the order of the above two subphases of the algorithm is

at worst O(Dk+(log 2 N)), where Dk = Dlk + Dk denotes the total number of

platforms detected by platform Pk * Referring now to the original "groblem, it is

clear that repeating the above process once for each of N platforms will yield a,

worst an O(D+(N log2 N)) algorithm, where D is the total number of detections

by all platforms.

A-3

BATMAN & ROBIN Wiilard-Lucker i
I
[

REFERENCES i

[CK] COOK, C.R., and D.J.KIM: "Optimal Sorting Algorithms

for Nearly-Sorted Lists", Comm. ACM, 23 (11), Nov. 1980.

[WL] LUEKER,G.S.: "A Data Structure for Orthogonal Range i
Queries", Proceedings of the 19th Annual IEEE

ISymposium on Foundations of Computer Science, pp. 28-34, 1978.

I
I
I
I
I
I
U
I
I
II

I

I
I

APPENDIX B

I
I
1
I
I
I

I BATTLE-DAMAGE-ASSESSMENT SIMULATION

I
I
I

I
I
I

I-

BATMAN & ROBIN Battle-Damage Assessment

BATTLE-DAMAGE-ASSESSMENT SIMULATION

1.0 Description

BATMAN & ROBIN simulate battle-damage assessment by assigning numerical values to
platforms and weapons. The numerical value assigned to a platform is called its
hittolerancelevel, and the numerical value assigned to a weapon is called its damage_pts.
These values are used to estimate battle damage, and are stored in BATMAN & ROBIN's
Parameter Database. The numerical values used for hit tolerancelevel and damagepts were
obtained from the Harpoon board game (Bond, 1987), or intelligently estimated based upon similar
platforms or weapons.

IWhen a weapon hits a platform, it inflicts specified damage_pts against the platform. The
damagepts are added to the platform's current battle damage. In order to not degrade BATMAN
& ROBIN's performance, the computations required to simulate battle-damage assessment are
based upon a simplistic, but efficient, mathematical model obtained from the Naval Postgraduate
School. It is stated below.I

percent-of-damage = [(current-damage / hittolerance-level) 2 * 100]

I As can be seen, a platform's damage increases exponentially as its current damage rises. This
simplistic model could easily be enhanced to provide more sophisticated battle-damage
assessment, including platform-speed degrading, submarine surfacing, and gradual platform
sinking. Other details like flooding or fire damage could also be modeled.

I 2.0 Assumptions and Constraints

The following assumptions and constraints were made during the design of the battle-damage-
assessment simulation:

* A platform is destroyed when its current damage reaches or exceeds its
hittolerancelevel, i.e., when its damage percentage becomes greater than or equal to
one-hundred percent. To date, damage percentages are displayed in BATMAN's task-
force and individual-platform status windows.

• The hit tolerance level for all air platforms is one. That is, air platforms will be
destroyed the first time they are hit.

* The Blue-force's mk48 and the Red-force's torptypecl inflict a higher damagepts
value against subsurface platforms than they do against surface platforms.

B-1

BATMAN & ROBIN Battle-Damage AssessmentU

Reference

Bond, L. (1987). Harmoon: Modern Naval Wargame Rules -- Data Annex Book. Bloomington, IL:I
Game Designers' Workshop.

B-2

APPENDIX C

RELATIONAL DATABASES:

CONSIDERATIONS, ISSUES,

I AND EVALUATION

c-0

BATMAN & ROBIN Relational Databases - I

RELATIONAL DATABASES:

CONSIDERATIONS, ISSUES,

AND EVALUATION

Randy R. Ullrich and Thomas F Bridges
Systems Engineering Associates, Inc.

1.0 Purpose and Scope

This report assesses BATMAN & ROBIN's current and future database needs, compares them
against candidate Database Management Systems (DBMS's), and makes selection
recommendations.

BATMAN & ROBIN store their data in four separate databases:

1. Object-Definition (i.e., parameters for platforms, weapons, sensors, etc.).

2. Scenario.

3. Graphic.

4. User.

Although this study focuses on DBMS's for improving interactions with the Object-Definition
Database, appropriate DBMS's could facilitate BATMAN & ROBIN in coordinating all four of its
databases.

The Object-Definition Database is currently implemented using Sun's User Defau'lts Database tool
(SunView System Programmer's Guide, 1988). It was originally decided to use this tool because
it was free, relatively efficient, and easy for programmers to use. However, as the functionality and
complexity of BATMAN & ROBIN have increased, so have the demands on the Object-Definition
Database This report formally explores DBMS alternatives that may be more appropriate for
BATMAN & ROBIN.

The reader is assumed to have a basic understanding of the design of BATMAN & ROBIN
(Federico, Bickel, Ullrich, Bridges, and Van De Wetering, 1989), as well as familiarity with
DBMS concepts (Ulrika, 1990), SunOS (SunOS Reference Manual, 1988), and the C
programming language (Kemighan and Ritchie, 1988).

The next section identifies limitations with the Object-Definition Database and the issues affecting
this report's recommendations. Section 3 lists the candidate DBMS's and section 4 describes the
criteria used to evaluate them. Section 5 evaluates the DBMS's. Finally, Section 6 presents
conclusions formed by this study and Section 7 offers database-selection recommendations.

2.0 Introduction

The Object-Definition Database is currently implemented with Sun's User Defaults Database. This
database is a standard text file stored in ASCII format. Sun provides an editor (defaultsedit) to

C-1

BATMAN & ROBIN Relational Databases -2

modify the database. Application programs access this database through a set of SunOS functions. i

There are a number of limitations with this implementation: 3
It is awkward for non-technical users to add, delete, and modify objects in the database.
BATMAN & ROBIN's Object-Definition Database has grown past the limits of Sun's
defaultsedit editor, so a text editor (e.g., vi) must be used to modify it. Most non-
technical users are unfamiliar with UNIX editors and must learn one before they can
modify the database.

* It is misusing Sun's User Defaults Database tool, which is intended as a centralized
location to maintain customization information for UNIX programs (e.g., mail, csh,
sunview, etc.). For example, the User Defaults Database entry:

/Mail/Set/Askcc "Yes"

tells the mail program to automatically prompt for the "cc" field when sending a n
message. BATMAN & ROBIN, however, obstruct developers from using the User
Defaults Database for this purpose.

" It can contain only text data. The User Defaults Database is stored in ASCII format and
cannot store binary data, e.g., icons.

* The programming functions provided for accessing the User Defaults Database are
limited to basic search and put routines.

Compounding these limitations are a number of major future enhancements being considered for i
BATMAN & ROBIN. The most notable are:

" An Object-Definition Database Editor: Since the platform, weapon, sensor, and other n
related parameters in the Object-Definition Database are unclassified and only
approximations, users should be able to change them to their more accurate classified
values. To ease users' editing task, an Object-Definition Database editor with a user- l
friendly interface, fashioned after BATMAN & ROBIN, will be written.

" Additional Computer Models: A number of DoD sites will use BATMAN & ROBIN 3
as an interface to their computer models. To do this, they need to add and delete entries
from the Object-Definition Database. Therefore, candidate DBMS's should not only
facilitate changes to existing attributes in the Object-Definition Database, but should n
also facilitate unlimited additions and deletions.

" Multiple-Machine Architecture: Currently, BATMAN is executed by one user on a
Sun workstation. The user allocates, deploys, and manages Blue-force assets against a
hostile Red threat. BATMAN has proved effective in presenting and coordinating this
resource-allocation problem to its user. As a possible improvement to BATMAN, the
addition of players and Sun workstations has been suggested. Under this architecture,
multiple machines connected by a network would allow any number of users to be
involved in the battle. For example, one user might manage the Blue force at one 3
workstation while a second user at a different workstation managed the Red force.

C
C-2

I

BATMAN & ROBIN Relational Databases - 3

Therefore, the candidate DBMS's should be able to operate in this environment.

Intelligent Platform Behavior: This proposed enhancement would allow platforms to
make their decisions dynamically based on the state of the battle and the nature of the
threat. It is addressed in detail as an evaluation criterion. For more information, refer to
section 4.4, Artificial Intelligence.

3.0 Candidate DBMS's

Table I lists the DBMS's evaluated in this report, and identifies the source that brought each
system to this report's attention. Addresses and telephone numbers of the DBMS vendors are listed
at the end of this document. The information in this report was gathered by direct consultation with
vendors, through reading printed material, and by personal experience.

Table 1

Candidate DBMS's

DBMS, Vendor Source

Informix, Informix Software, Inc. UNIX Database Management Systems
Ingres, Relational Technology, Inc. Statement of Work
Oracle, Oracle Corp. Statement of Work
Sybase, Sybase, Inc. Statement of Work

G-Base, Graphel Statement of Work, UNIXWORLD
Gemstone, Servio Logic Corp. Statement of Work, UNIXWORLD
Ontos (V-Base), Ontologic Corp. Statement of Work, UNIXWORLD
Vision, Innovative Systems Statement of Work, UNIXWORLD

C Database Toolkit, Jaybe Software Catalyst Catalog
C-ISAM, Informix Software, Inc. Catalyst Catalog
C-tree, Faircom The Programmer's Shop
db_VISTA III, Raima Corp. Catalyst Catalog
ndbm, Sun Microsystems, Inc. SunOS (4.3 BSD UNIX)
User Database, Sun Microsystems, Inc. Current system

These DBMS's can be grouped into three main categories: relation database management systems
(RDBMS's), object-oriented database management systems (00-DBMS's), and database
management toolkits. The following sections describe the capabilities of each.

3.1 Relational Database Management Systems (RDBMS's)

RDBMS's are designed as standalone, multi-user, database environments. They excel in handling
large sophisticated .Aatabases, e.g., on-line transaction processing (OLTP) systems, and decision

C-3

BATMAN & ROBIN Relational Databases - 4 U
support systems. Some example applications include banking, finance, accounting, and factory I
automation. The candidate DBMS's in this category are Informix, Ingres, Oracle, and Sybase.

These systems provide capabilities to create and interact with databases, generate reports, and write
high-level language application software. The following list describes typical features of
RDBMS's.

• Menus and Forms: Allow application programmers to build menu- and form-driven
front-ends to their databases.

" Reports: Allow users to synthesize the data in the database and to print reports based
on various criteria.

* SQL (Structured Query Language): A language for extracting information from the I
database. Originally developed by IBM, this language is now an industry standard. Its
English-like syntax makes it easy to use. For example, the command: "select name from
address where state = CA" would print all California residents from an address
database.

• 4GL (Fourth Generation Language): A database programming language that allows I
programmers to build applications on top of the database, generally with fewer
instructions than traditional high-level programming languages.

" Programming Interface: A function library or an SQL preprocessor that allows C
programs to search the database and extract values.

3.2 Object-Oriented Database Management Systems (00-DBMS's)

OO-DBMS's, fashioned after object-oriented programming concepts (Meyer, 1988), model an
object in the real world with a corresponding item in the database. Both the object's attributes and I
its behavior can be stored. This is similar to the object-oriented programming scheme of
encapsulating a data structure and the functions that manipulate that data structure into one module.
Inheritance, where the attributes of one object are used to build another object, is also supported I
by OO-DBMS's. Another powerful feature of 00-DBMS's is that they can store abstract binary
data (e.g., bit-maps, scanned images, video), whereas typical RDBMS's can store only predefined
data types (e.g., character strings, integer values, real values, dates). Most of the target markets of I
OO-DBMS's have been scientific and technical, however, they could be applied to many fields,
including financial. 3
This object-oriented perspective is consistent with BATMAN & ROBIN's software design and
could provide additional clarity and elegance to the software. For example, an 00-DBMS could
ease the chore of retrieving an F- 14 platform from the database. Currently, platform attributes and I
icons are stored in separate databases, requiring separate access routines. Using an 00-DBMS,
however, BATMAN & ROBIN would have to make only one query. In response, the 00-DBMS
would return attributes of the F-14 (text data), bit-mapped icons of the F-14 (binary data), and rules I
governing the F-14's behavior (code). This same scheme could be applied to BATMAN &
ROBIN's other objects, such as weapons, sensors, and jamming pods.

A disadvantage of 00-DBMS's is that they are typically unproven, developed by young start-up I

C-4 I

BATMAN & ROBIN Relational Databases - 5

companies whose stability is questionable. Additionally, 00-DBMS's tend to be slower than
RDBMS's, and they lack the wide range of support utilities provided by RDBMS's.

This report's information on the four 00-DBMS's (G-Base, Gemstone, Ontos, and Vision) came
from the UNIXWORLD article "Obiect-Oriented Databases Arrive" (the Ontologic product
discussed in the article, V-Base, has been renamed to Ontos). Addresses and telephone numbers of
Innovative Systems (Vision) and Graphel (G-Base) were unavailable, even after consultation with
UNIXWORLD. Because these vendors were unreachable, their products are not discussed in this
report. However, the other companies mentioned in the article, Servio Logic (Gemstone) and
Ontologic (Ontos), were found, and their products are included.

3.3 Database Management Toolkits

Database management toolkits are libraries that provide simple database creation and access
functions. They usually provide an interface to C applications. The candidate DBMS's in this
category are The C Database Toolkit, C-ISAM, C-tree, db_Vista III, ndbm, and User Defaults
Database (i.e., the current system).

All database management toolkits use the Indexed Sequential Access Method (ISAM) technique
of data management. The most prevalent ISAM indexing method uses a b-tree (Wirth, 1976) due
to its efficiency and its ability to easily traverse databases in sorted order. Some database toolkits
also provide add-on SQL, screen management, and reporting modules, providing capabilities
similar to RDBMS's.

4.0 Criteria

The following sections define the criteria used to evaluate the candidate DBMS's. These were
gathered from the Statement Of Work and from consultation with the software developers. While
researching this report, however, it was discovered that some of these criteria have no effect on the
database selection. In those cases, the reasons why the selection is not effected are explained.

4.1 Human-Computer Interface

BATMAN & ROBIN's human-computer interface is based on a strict direct-manipulation protocol
that makes the system easy to use. This protocol includes the following guidelines:

* All user interactions come from the mouse; the keyboard is used only when absolutely
necessary.

" Graphic representations, i.e., icons, are used to depict objects. Using the mouse, the user
"directly manipulates" objects on the screen.

" The system presents objects on the screen only when appropriate. That is, the system
itself poses no obstacle; the logical actions that the user can make are displayed for him
automatically.

Many DBMS's come with an integrated set of application development tools, e.g., screen-form
utilities. These utilities help users define and modify their databases. However, none of them
adheres to BATMAN & ROBIN's strict human-computer-interface protocol as outlined above.
This is precisely why a custom Object-Definition Database editor will be written. Since this editor

C-5

BATMAN & ROBIN Relational Databases - 6

can be created using any DBMS with a C-language interface, this criterion is not an issue and is
not considered in the evaluation.

4.2 Software Interface i

This criterion poses two questions:

1. How much software will have to be written or changed to integrate the DBMS into

BATMAN & ROBIN?

2. Can the DBMS store binary data, i.e., could it be applied to BATMAN & ROBIN's
Icon database?

For example, question one asks whether a candidate DBMS would require merely rewriting the I
current database-interface routines dget i and dget s or whether more work would have to be
done. The estimated number of source-code lines to be written or changed is used as the metric for
answering this question.

DBMS's judged against this criterion produce evaluations like "100 lines / YES", indicating that
approximately 100 source lines would have to be added or changed to integrate the DBMS into I
BATMAN & ROBIN and that the DBMS can be applied to BATMAN & ROBIN's Icon database.

4.3 C Compatibility 3
BATMAN & ROBIN is written in the C programming language and is targeted at the Sun family
of computers. All candidate DBMS's must contain a C programming-language interface; support
Sun-3, Sun-4, and SPARCstation computers; and operate in the SunView windowing environment U
under SunOS Version 4.0 or later.

4.4 Artificial Intelligence

Currently, all platform actions either occur automatically (e.g., weapon firing) or require manual
intervention (e.g., platform movement). A future objective of BATMAN & ROBIN is to
incorporate intelligent-platform behavior. Briefly, this capability allows platforms to make their
decisions based on defense conditions (DEFCONS) using rules of engagement (ROEs). A
knowledge base, derived from consultation with tactical experts, would be integrated into
BATMAN & ROBIN to drive the decision process. At this time, platform behavior has not been
established, so the design of this feature cannot be finalized. There are, however, two basic ways
to represent the intelligent behavior: as code or as data. I
The first design alternative, representing intelligent behavior as code, is straightforward to
implement. The rules of behavior regarding movement and weapon firing would be transcribed in
C code. This approach is compatible with the current BATMAN & ROBIN design, since each I
platform has functions for drawing, moving, detecting, and firing weapons. Currently, many
different types of platforms use the same functions. For example, F-14s, F/A-18s, and S-3Bs all
use the same weapon-firing function. To incorporate intelligent platform behavior, each type of I
platform would have its own specific routines to model its behavior.

If BATMAN & ROBIN were to implement intelligent behavior as code, it would have little effect 3
on the DBMS recommendation. The only database requirement would be to store the names of the

I
C-6

I

BATMAN & ROBIN Relational Databases - 7

control functions for each platform, and any DBMS under consideration is capable of this.

The second approach is to represent intelligent behavior as data. There are two options for this
approach: (1) write a custom expert system or (2) use a commercially available expert-system
shell.

A DBMS would help when writing a custom expert system, since it could store the knowledge base
with the platform data. However, writing an expert system would be costly and time consuming.
With powerful tools already available, this would not be cost effective for BATMAN & ROBIN.
Writing a custom expert system is not considered a reasonable option and therefore plays no part
in the DBMS recommendation.

The second approach to implementing intelligent behavior as data is to use an expert-system shell.
Most expert-system shells provide an inference engine to evaluate the knowledge base, an interface
for creating and maintaining the knowledge base, a debugging tool to test the knowledge base, and
tools to create an end-user interface (Gevarter, 1987). All expert-system shells store the knowledge
internally; some even provide software interfaces to allow programs to access their information.
Since the expert-system shell maintains the data itself, the DBMS recommendation again is not
affected.

In summary, intelligent-platform behavior has no effect on this report's recommendations,
regardless of whether this behavior is implemented as code or as data. Therefore, this criterion is
not included in the evaluation.

4.5 Defaults Conversion

The format of the Object-Definition Database (i.e., the ".defaults file") is specitic to Sun's User
Defaults Database. While many candidate DBMS's provide conversion routines, none provides
automatic conversion from the User Defaults Database format. For all DBMS's, a program mus,
be written to read in the ".defaults file" and to write out the appropriate DBMS records.

This conversion would be a simple programming task. Currently, BATMAN & ROBIN uses the
routines dget s and dgeti to retrieve data from the Object-Definition Database (the dgets
routine gets a string value; the dgeti routine gets an integer value). For example, the call:

dgets("F-14", "longname", plat- >longname)

gets the long name of the F-14 (i.e., Tomcat) and stores it in the longname field of a platform
record.

As currently planned, the interface between BATMAN & ROBIN and the Object-Definition
Database would not change; dget_s and dgeti would still be used, but would be rewritten to
interface with the selected DBMS. A program will convert the Object-Definition Database using
the old d gets and dgeti. The program will read all the fields for platforms, weapons, and
detection units and will then write them out in the new DBMS's format. Once the new database
has been created, the old d_gets and dget-i in BATMAN & ROBIN would be replaced with their
new versions.

In summary, any candidate DBMS with a C programming interface would support this simple

C-7

BATMAN & ROBIN Relational Databases - 8 I

conversion program. Therefore, this criterion is not included in the evaluation. I
4.6 Vendor Support

Each vendor should provide, at the minimum, telephone support. That is, the vendor would have a
dedicated group to answer questions and provide help. Additionally, vendors who are able to
provide on-site support in San Diego would be looked at favorably.

4.7 Product Stability

This report considers a product stable when it (1) has been on the mark,.t for at least three years,
and (2) bas sold at least 250 units.

4.8 Cost

There are two DBMS costs to consider: (1) development-system r.ost, incurred by Navy Personnel
Research and Development Center (NPRDC) and by transition s"tvi. and (2) end-user cost. A
transition site uses BATMAN & ROBIN source code as a point of departure for other related Navy I
training projects, and modifies the code to meet their needs. End-user sites do not receive source
code.

The development-system conwins 01 components of the DBMS necessary for creating,
maintaining, and executing applications, and must include the C-language interface. The
development system is necessary for integrating the DBMS with BATMAN & ROBIN, writing the 3
Object-Definition Database Editor, and adding new computer models to BATMAN & ROBIN. It
should be purchased as a site-license, meaning any Sun workstation connected to the development-
site local area network has access to the DBMS.

The end-user cost includes distribution royalties that would be incurred when delivering
applications built with the DBMS. This cost must be considered because BATM, 'N & ROBIN is
currently installed at a number of end-user sites and will be installed at many more in the future.
Since all other BATMAN & ROBIN software can be distributed free to any DoD site, using a
DBMS that requires an end-user license complicates installation and increases the cost to potential
sites. For vendors that allow royalty-free distribution, this is not a problem. Therefore, a DBMS
that has no distribution royalties is favored over one that requires an end-user license.

4.9 Future Enhancements U
Since they are future enhancements to BATMAN & ROBIN, the enhancements listed at the end of
section 2 are, by their nature, uncertain. In a sense, this is a flexibility criterion, used to ensure that 3
a particular DBMS won't obstruct potential directions for BATMAN & ROBIN.

Candidate DBMS's are given a I if they would facilitate the enhancement and a -1 if they would
obstruct implementation. The values assigned are by consensus of the development team. The I
following sections describle the criteria used to score each future enhancement.

4.9.1 Object-Definition Database Editor I
To implement the Object-Definition Database Editor, an ideal D3MS would allow the programmer
to: 3

C-8

I

BATMAN & ROBIN Relational Databases - 9

* Add, delete, and modify database records, e.g., platforms in a platform database.

• Search a database using a key, e.g., search a platform database for all U.S. (the key)
platforms.

* Search a database using multiple keys, e.g., search a platform database for all U.S. (first
key) air (second key) platforms.

" Get the next record in a sorted list, e.g., retrieve the next record from a search of U.S.
(first key), JTIDS-capable (second key), air (third key) platforms.

These features would benefit both the programmers and the users of the Object-Definition
Database Editor. The programmers would be given a robust set of tools to work from; the users
would st,, fast response time from efficient searches. Therefore, DBMS's that pro,/ide these
features are given a point.

4.9.2 Adding Computer Models

Adding a computer model to BATMAN & ROBIN typically requires:

1. adding new fields to existing records, e.g., the antennas field to the pla!form record for
JTIDS, and

2. creating new record types, e.g., sonobuoys for the ASW models.

Therefore, DBMS's *hat facilitate these types of changes are given a point.

4.9.3 Multiple-Machine Architecture

To date, the design of a multiple-machine architecture is uncertain. There are, however, two
primary design strategies: a window server or a database server.

If multiple machines were coordinated using a window server, as in X-windows (Nye, 1988), a
single server station would drive the displays of several client stations. In this case, the database
would be managed by a single program on the server station. Under this implementation, a
multiple-machine architecture would be transparent to the database manager. Hence, if the
multiple-machine architecture is implemented as a window server, it has no effect on the DBMS
recommendation.

However, if this enhancement is implemented using a data" 'se server, then it does have an effect
on this report's recommendations. Therefore, ".s a -,onservative approach, this future enhancement
is scored assuming that the multiple-machine architecture is implemented as a database server.

Under the database-server design, one copy of the database would reside on the server machine,
and each client machine would access the database independently. To upport this capability, a
DBMS would need (1) record locking to provide multi-user contention arbitration and (2) network
server support. Therefore, DBMS's that provide thesc two features are given a point.

4.10 Performance

It is difficult to obtain meaningful performance data for DBMS's. Some vendors publish VAX I 1/

C-9

BATMAN & ROBIN Relational Databases - 10 i

780 benchmarks for their packages; others offer abstract graphs illustrating the relative I
performance of their product against other products. Most provide no performance data at all,
except to say that their products are faster than the competition's.

Ideally, the way to measure DBMS performance for BATMAN & ROBIN would be to purchase
an evaluation copy of each, run it through a custom benchmark program on the Sun-4/260, and
display the results in a figure or a table. This effort would be costly and time-consuming.
Moreover, since most of the Object-Definition Database is read into memory-resident structures at
BATMAN & ROBIN's startup, the runtimne performance of candidate DBMS's is less critical than
other criteria.

Therefore, because of the difficulties in objectively measuring performance, and because, to date,
DBMS performance is not critical to BATMAN & ROBIN, this criterion is not included in the I
evaluation.

5.0 Evaluation

Table 2 presents an evaluation matrix of DBMS's. The products are listed vertically, while the
criteria used to evaluate them are listed horizontally. The information gathered for each criterion
is discussed in the following sections.

5.1 Software Interface

Currently, BATMAN & ROBIN's interface to the Object-Definition Database is through the two i
routines dget i and dget s. Occupying 75 lines of code, this represents the minimum amount of
code that would have to be rewritten to integrate any of the commercial DBMS's or ndbm into
B,_TMAN & ROBIN. This does not include the ".defaults file" conversion program that would
have to be written (see section 4.5, Defaults Conversion). Therefore, the actual number of coding
lines that would have to be written depends on the peculiarities of each DBMS, but for any DBMS
the number would be greater than 75. Without doing the integration, though, it is impossible to get
an accurate measure here.

If Sun's User Defaults Database were kept, no existing lines of code would have to be changed and i
no conversion program would have to be written.

Sybase, Gemstone, Ontos, C-tree, and dbVISTA III could be applied to BATMAN & ROBIN's 3
Icon database since they support binary data.

5.2 C Compatibility

All DBMS's provide a C-language interface except for Ontos, which supports only C++.

5.3 Vendor Support I

With the high number of commercial DBMS's available, it is not surprising that all vendors offer
telephone technical support. 3
5.4 Product Stability

Most of the RDBMS's and DBMS toolkits meet BA'1 MAN & ROBIN's stability requirements, as
described in section 4.7, Product Stability. Sybase, Gemstone, Ontos, and C Database Toolkit, i

I
C-10

I

BATMAN & ROBIN Relational Databases - 11

however, do not meet the stability requirements.

ITable 2

I DBMS Evaluation

Product Software1 C Support Stability2 Cost 3 Future 4

Interface Scores

Informix 75+/N Y Y 6 / thousands $2,050 / $925 1/-I/I
Ingres 75+ / N Y Y 9 / thousands $15,160 / $4,000 1/-i/1
Oracle 75+/N Y Y 8/thousands $11,780/$5,130 1/-I / 1
Sybase 75+/Y Y Y 3/200+ $10,800/$6,480 1/-i / 1

Gemstone 75+/Y Y Y 2.5/90 $32,000+ / Ng 5 1 / - I / I

Ontos 75+/Y N Y 0.75/80 $15,000 / Ng 5 1/-i/1

CDB Toolkit 75+/N Y Y 8/150 $295/$150 1/-I / I
C-ISAM 75+/N Y Y 10 / thousands $630/$315 1/-i/1
C-tree 75+/Y Y Y 10/10,000+ $395/$0 1/-I/I
db_VISTA 75+/Y Y Y 6/8,000+ $4,490/$0 l/-l/1
ndbm 75+ / N Y Y 3+/ 250,000+ $0/$0 1/-i/-I
Sun User DB 0/N Y Y 3+ / 250,000+ $0/$0 -l/l/-1

1Number of coding lines / can be applied to BATMAN & ROBIN's Icon Database.
2Number of years on market / number of units sold.
3Development-system / end-user.

I 4Object-Definition Database Editor / Adding Computer Models / Multiple Machine Architecture. For more
information, refer to section 5.6, Future-Enhancement Scores.

I 5Negotiable, but present.

5.5 Cost

Only ndbm and Sun User DB are totally free to BATMAN & ROBIN. C-tree and db_VISTA are
free to end-user sites, but require a development-system cost that would be incurred by NPRDC
and transition sites. All other DBMS's have development- and end-user costs.

The cost quotes for each DBMS are broken down as follows.

Informix: The data listed refers to the two Informix products INFORMIX-SQL, providing
an SQL interface to the database, and INFORMIX ESQL/C, providing the C-language
interface. The development-system cost is $2,050. The end-user cost is $925.

Ingres: The development-system cost includes (1) $13,200 for two to eight users, and (2)

I
I

BATMAN & ROBIN Relational Databases - 12 •

$1,960 for the embedded SQL C-language interface. The end-user cost is $4,000. i
Oracle: The development-system cost includes (1) a database-engine cost of $10,450 for

to tc, 1% uzcrz;, (2) $760 for the SQL interface (SQL*Pius), and (3) $570 for the C- a

language interface (PRO*C). The end-user cost includes (1) a database-engine cost of

$3,800, (2) $760 for SQL*Plus, and (3) $570 for PRO C.

Sybase: The development-system cost includes (1) $10,000 for two to four users, and (2)
$800 for the C-programmer's interface. The end-user cost includes (1) $6,000 for the base l
system and (2) $480 for the C-programmer's interface.

Gemstone: The development-system cost of $32,000 is for four users. The end-user cost is
negotiable, depending on the number of units sold.

Ontos: The development-system cost is $15,000. The end-user cost is negotiable,
depending on the number of units sold.

C Database Toolkit: The development-system cost of $295 is for the CDB library, the C-
language interface. The end-user cost is $150. I
C-ISAM: The development-system cost is $630. The end-user cost is $315.

C-tree: The development-system cost of $395 includes source code. There is no end-user
cost.

db VISTA III: The development-system cost of $4,490 includes source code. There is no U
end.-user cost.

ndbm: Since it comes standard with SunOS, there is no development-system or end-user
cost.

Sun User DB: Since it comes standard with SunOS, there is no development-system or
end-user cost.

5.6 Future-Enhancement Scores

The following sections outline how the future-enhancement scores for each DBMS were
determined. As described in section 4.9, Future Enhancements, a 1 means the DBMS would
facilitate the enhancement and a - means it would obstruct implementation.

5.6.1 Object-Definition Database Editor

The commercial DBMS's and ndbm all provide capabilities that would ease implementing the i
Object-Definition Database Editor. Therefore, these DBMS's were given a I for this future
enhancement. 3
Sun's User Defaults Database, however, is not designed to provide these capabilities, and was
given a -1. The limitations of Sun's User Defaults Database are discussed in section 2.0,
Introduction. I

I
C2-12

I

BATMAN & ROBIN Relational Databases - 13

5.6.2 Adding Computer Models

For the commercial DBMS's and ndbm, performing the tasks required to add a computer model
can be difficult. At the minimum, the programmer modifies the record structure and then runs an
update program included with the DBMS. In the worst case, the update program has to be written
by the programmer from scratch. Because of this added overhead, the commercial DBMS's and
ndbm were all given a -1 for this future enhancement.

Sun's User Defaults Database, however, is easy for programmers to update since it is stored as a
standard text file in ASCII format. The programmer can use vi or some other UNIX text editor to
make the additions. Therefore, Sun's User Defaults Database was given a 1 for this future
enhancement.

5.6.3 Multiple-Machine Architecture

All DBMS's except ndbm and Sun's User Defaults Database provide record locking and network
server support. Therefore, only these two were given a -1 for this future enhancement.

6.0 Conclusions

The RDBMS's discussed in this report (Informix, Ingres, Oracle, and Sybase) are robust, rating
favorably in many categories. The only notable exception is Sybase's limited time on the market
and small installed base. In all other regards, these are capable products that could benefit
BATMAN & ROBIN. However, when considering the issues surrounding BATMAN & ROBIN,
there are a number of problems with these RDBMS's. First, they are expensive, both in
development-system and end-user costs. Second, they provide far more functionality than
BATMAN & ROBIN needs, for example, SQL and 4GL. This can complicate integrating these
systems into BATMAN & ROBIN, since there would be a learning curve attached to these
products. Lastly, one of the main advantages of RDBMS's, their comprehensive set of utilities, is
not relevant to BATMAN & ROBIN since the Object-Definition Database Editor will be
developed. That is, BATMAN & ROBIN would not use the form, menu, and report-generating
utilities that often come standard with RDBMS's. If an RDBMS is chosen, Informix seems the best
because, while it rates equal to the other products in other regards, it is less expensive.

OO-DBMS's have two principal advantages: (1) they can store binary data, e.g., icons and (2) their
designs are consistent with BATMAN & ROBIN. However, these systems have a number of
disadvantages that far outweigh these advantages. First, they are very expensive, even more so than
RDBMS's. This high cost is due in part to the second disadvantage of OO-DBMS's, their small
installed base. Lastly, similar to RDBMS's, integration with these systems would be difficult
because of the required learning curve. Addressing the two OO-DBMS's discussed in this report,
Gemstone rates better than Ontos, since Gemstone is more stable and since Ontos does not have a
C-language interface.

DBMS toolkits provide many of the capabilities needed by BATMAN & ROBIN, but are much
less expensive than RDBMS's and OO-DBMS's. Four important points to note concerning the
toolkits are (1) both C Database Toolkit and C-ISAM require end-user distribution royalties; (2) C
Database Toolkit does not pass the product-stability requirements since it has sold only 150 units;
(3) db_VISTA III's development system cost is much higher than the others; and (4) both ndbm
and User Defaults Database, since they come bundled with SunOS, have no development-system

I
C-13I

BATMAN & ROBIN Relational Databases - 14 •

or end-user cost. I
7.0 Recommendations 3
The strongest selection criteria discovered in this report are (1) C compatibility and (2) cost (in its
varying forms). As illustrated in the decision uee in Figure 1, these two criteria are the basis for
the recommendations that follow.

Since BATMAN & ROBIN is written in the C programming language, any candidate DBMS must
provide a C-language interface. Ontos does not, and this report recommends against it.

This report also recommends avoiding any DBMS that requires end users to pay distribution
royalties. Since BATMAN & ROBIN can currently be distributed without cost to any DoD site,
adding a distribution royalty would increase the expense and logistics of delivering BATMAN & I
ROBIN and would reduce the system's appeal. Furthermore, with the large number of potential
end-user sites throughout the DoD, the amount paid in distribution royalties could be substantial.
Therefore, this report recommends against Informix, Ingres, Oracle, Sybase, Gemstone, Ontos, C I
Database Toolkit, and C-ISAM.

An additional reason for avoiding the RDBMS's and OO-DBMS's is their high development- 3
system cost. The DBMS toolkits provide sufficient functionality for BATMAN & ROBIN but at a
much lower price.

After applying the C-language filter and the distribution-royalties filter, the remaining DBMS's
are: C-tree, dbVISTA III, ndbm, and User Defaults Database. The following summary lists the
advantages and disadvantages of each.

C-tree and dbVISTA III

Advantages:

• Are very stable products.

* Have no end-user distribution royalties. I
0 Can store icons using variable length records.

* Could be used in a multiple-machine architecture since they both provide record
locking and network server capabilities.

* Source code is included. I
• Contain a robust set of programming tools. 3
Disadvantages:

• Transition sites must purchase a development-system. 3
" Difficult for programmer to add new fields and records.

I
I

C-14

I

BATMAN & ROBIN Relational Databases - 15

I

Candidates:
Informix, Ingres, Oracle, Sybase,

Gemstone, Ontos, CDB Toolkit, C-ISAM,
C-tree, d-VISTA, ndbm, and Sun DBI

C NDiscard:
Compatibility? No Ontos

Yes,
End-User Discard:

Distribution Informix, Ingres, Oracle,DtRoyalties? Sybase, Gemstone, CDB
<Toolkit, and C-ISAM

No

Transition- Discard:
Yes site cost No db_VISTA and

-<*
C-tree

ConsiderC
db_VISTA, C-tree, ndbm and Sun DBI ndbm, and Sun DB

I
I
IFigure 1. DBMS-Selection Decision Tree

IC-15

BATMAN & ROBIN Relational Databases - 16 1
ndbmi

Advantages:

• No development or end-user cost.

" Contains a satisfactory set of programming tools.

Disadvantages:

" Difficult for programmer to add new fields and records. i
" Cannot store icons.

• Suffers in a multiple-machine architecture because it does not provide record locking i
or network server capabilities.

• Source code is not available. i

User Defaults Database 3
Advantages:

• No development or end-user cost. i
" Easy for programmer to add new fields and records. •

Disadvantages:

• Obstructs developers from using this database for its intended purpose. 3
* Cannot store icons.

• Suffers in a multiple-machine architecture because it does not provide record locking
or network server capabilities.

* Source code is not available.

• Contains a limited set of programming tools. I
As a final cost-related selection filter, note that transition sites that use BATMAN & ROBIN as a
point of departure must purchase a development-system version of the DBMS. If this cost is not
acceptable, then C-tree and db_VISTA III should not be considered because of their development-
system costs. Under this condition, this report recommends experimenting with ndbm to discover
firsthand how it might benefit BATMAN & ROBIN. Perhaps both ndbm and Sun's User Defaults 3
Database could be used to implement the Object-Definition Database. That way, the advantages of
one system might be used to counterbalance the disadvantages of the other.

However, if transition-site cost is acceptable, or if there is such a small number of transition-sites
that it is not an issue, the potential benefits of C-tree and dbVISTA III should not be overlooked.

I
C-16

I

BATMAN & ROBIN Relationa! Databases - 17

In particular, both C-tree and dbVISTA III would be useful for developing the Object-Definition
Database editor and for implementing a multiple-machine architecture, while ndbm and User
Defaults Database may complicate these enhancements. Therefore, under the condition that
transition-site cost is acceptable, this report recommends experimenting with C-tree and
db_VISTA HI, as well ndbm, to get a better idea of the capabilities of each system. Both C-tree and
dbVISTA III offer trail evaluation copies of their products. Again, Sun's User Defaults Database
could be used in conjunction with the selected DBMS to reduce the disadvantages of either system.

References

Butler, C.W., Hodil, E.D., and Richardson, G.L. "Building Knowledge-Based Systems with
Procedural Languages." IEEE Expert, Summer 1988, pp. 47-59.

Federico, P-A., Bickel, Ullrich, Bridges, and Van De Wetering. BATMAN & ROBIN Rationale,
Software Design, and Database Descriptions (TN 89-18). Navy Personnel Research and
Development Center. San Diego, CA: April 1989.

Gevarter, William B. The Nature and Evaluation of Commercial Expert System Building Tools.
NASA Ames Research Center. Moffett Field, CA: May 1987.

Kernighan, B.W., and Ritchie, D.M. The C Programming Language. Second Edition. Englewood
Cliffs NJ: Prentice-Hall, 1988.

Meyer, Bertrand. Object-Oriented Software Construction. Hemel Hempstead: Prentice-Hall
International, 1988.

Nye, Adrian. XLIB Programming Manual. Newton, MA: O'Reilly & Associates, INC., 1988.

Peterson, Robert W. "Object-Oriented Data." Al Expert, March 1987, pp. 180-185.

Programmer's Shop. Catalog, Spring 1990, p. 41.

Rodgers, Ulrika. UNIX Database Management Systems. Englewood Cliffs, NJ: Prentice-Hall,
1990.

Sun Microsystems. SunOS Reference Manual. Mountain View CA: 1990.

Sun Microsystems. SunView System Programmer's Guide. Mountain View CA: 1990.

Sun Microsystems. Catalyst Catalog. SPARC Edition. Mountain View CA: Fall 1989.

Tucker, Michael Jay. "Object-Oriented Databases Arrive." UNIXWORLD, August 1989, pp. 62-
66.

Wirth, Niklaus. Algorithms + Data Structures = Programs. Englewood Cliffs NJ: Prentice-Hall,
1976.

I
C-17I

BATMAN & ROBIN Relational Databases - 18 I
Databases and Vendors

C Database Toolkit Jaybe Software U
2509 N. Campbell, Suite 259
Tuscon, AZ 85719
(602) 327-2299

C-ISAM, Informix Informix Software, Inc.
4100 Bohannon Drive

Menlo Park, CA 94025
(415) 322-4100

C-tree Faircom
4006 West Broadway
Columbia, MO 65203
(314) 445-6833

dbVISTA HI Raima Corporation I
3245 146th Place S.E.
Bellevue, WA 98007
(206) 747-5570

Ingres Relational Technology, Inc.
1080 Marina Village Parkway
P.O. Box 4006
Alameda, CA 94501
(415) 769-1400

Gemstone Servio Logic Corporation
1420 Harbor Bay Parkway
Suite 100
Alameda, CA 94501
(415) 748-6200

ndbm, User Defaults Database Sun Microsystems, Inc.
2550 Garcia Avenue
Mountain View, CA. 94043
(415) 960-1300

Ontos Ontologic Corporation I
Three Burlington Woods
Burlington, MA 01803
(617) 272-7110

Oracle Oracle Corporation
20 Davis Drive
Belmont, CA 94002
(415) 598-8000

i
C-18 I

BATMAN & ROBIN Relational Databases - 19

Sybase Sybase, Inc.
6475 Christie Avenue
Emeryville, CA 94608

(415) 596-3500

I-1

DISTRIBUTION LIST

Office of the Chief of Naval Research (OCNR-20), (OCNR-222), (OCNR-1142), (OCNR-
1142CS)

Bureau of Naval Personnel (PERS-01J J), (PERS- 1 lEE)
Space and Naval Warfare Systems Command (SPAWAR- 159-4)
Chief of Naval Operations (OP-593), (OP-593D)
Naval Air Systems Command (PMA-205), (933G)
Commander, Naval Air Force, U.S. Pacific Fleet (313)
Naval Air Development Center (40L)
Naval War College (331)
Naval Research Laboratory (5530)
Naval Surface Warfare Center, Dahlgren (N31)
Naval Surface Warfare Center, Silver Spring (D25)
Naval Training Systems Center (254)
Naval Warfare Analysis Center (30M2)
Naval Weapons Center (3032)
Naval Postgraduate School (OR/Pp), (OR/Wg), (OR/B 1), (OR/Na), (OR/Ha), (OR/Er)
Naval Ocean Systems Center (432), (44), (442), (444), (624), (713), (723)
Fleet Combat Training Center, Pacific (32)
Tactical Training Group, Pacific (NI)
Carrier Airborne Early Warning Weapons School (CO)
Johns Hopkins University Applied Physics Laboratory (WAL)
Defense Advanced Research Projects Agency (DIRO), (ASTO)
Army Research Institute ((PERI-ZT)
Air Force Human Resources Laboratory (OT), (LRS-TDC)
Institute for Defense Analyses, Science and Technology Division
Canadian Defense and Civil Institute of Environmental Medicine
Defense Technical Information Center (DTIC 2)

